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Abstract

We calculate the second and third integral homology of arbitrary
finite rank Coxeter groups. The first of these calculations refines a
theorem of Howlett, the second is entirely new. We then prove that
families of Artin monoids, which have the braid monoid as a sub-
monoid, satisfy homological stability. When the K(m,1) conjecture
holds this gives a homological stability result for the associated fam-
ilies of Artin groups. In particular, we recover a classic result of
Arnol’d.
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Introduction

This thesis is concerned with the homology of Coxeter and Artin groups. Broadly, the
thesis can be separated into two parts: the first two chapters cover results that give formulas
for the second and third integral homology of a finite rank Coxeter group, and the remaining
chapters focus on a homological stability results for families of Artin monoids.

Introduction to Coxeter and Artin groups

Harold Scott MacDonald Coxeter (known as Donald) was one of the greatest geometers
of the twentieth century. Born in 1907, son to a sculptor and a painter, he was drawn to
geometric shapes as a child, and later to a chapter on ‘platonic solids’ in his school textbook.
Pursuing this interest, he won a prize for an essay on “Dimensional Analogy”, and Bertrand
Russell, who was friends with his father, read the essay and persuaded Coxeter to pursue
mathematics, despite being at the bottom of his class. His continuing fascination with poly-
topes and geometry led him to rigorously define regular polytopes, extending the notion of
regular polygons and polyhedra to tessellations, such as honeycombs, and higher dimensional
polytopes. The renewed interest in polytope reflection groups in the twentieth century was
partially due to the discovery that many polyhedra occur naturally, inherent in crystalline
structures. Due to the symmetrical laws of nature, it is the regular polyhedra which occur.
However as Coxeter writes:

“Thus the chief reason for studying regular polyhedra is still the same as in
the time of the Pythagoreans, namely, that their symmetrical shapes appeal
to one’s artistic sense.”

H.S.M. Coxeter Regular Polytopes [16l, p.vi]

and so it is possible that he required no application, only inherent beauty, to study these
objects. Coxeter introduced the symmetry groups of regular polytopes, Kaleidoscopic groups,
in his 1947 book Regular Polytopes [16], reviewed in the 1949 Bulletin of the American
Mathematical Society:

“The serious mathematics begins with the third chapter in which Coxeter in-
troduces the symmetry groups of the Platonic solids. After a full discussion
of this important topic, he turns to degenerate polyhedra such as tessellations
and honeycombs and their groups. These lead to results of crystallographic
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INTRODUCTION TO COXETER AND ARTIN GROUPS 2

importance. Under the heading “The Kaleidoscope” he then describes the dis-
crete groups generated by reflections. The exposition is greatly illuminated by
his own “graphical notation” which makes complicated relations self-evident.”
C. B. Allendoerfer Bulletin of the AMS 1949 [3]

In 1961 Tits introduced the abstract definition of Cozeter groups in his preprint Groupes
et geometries de Coxeter: a Coxeter group is generated by a set of involutions, which satisfy
generalised braiding relations [44]. One of the most primitive examples of a Coxeter group
is the symmetric group on n letters, S,. The groups of “The Kaleidoscope” were exactly the
finite examples of Coxeter groups and the “graphical notation” of Coxeter became known as
Cozeter-Dynkin diagrams. Coxeter groups play a significant role in many areas of mathematics
and they often arise as the foundations of various structures. For example they arise as root
systems and indexing sets for Iwahori-Hecke algebras in the representation theory of groups
of Lie type, they arise as Weyl groups of Lie algebras and algebraic groups [27]. In both
geometric and combinatorial group theory, Coxeter groups arise as a rich source of examples,
and Tits originally defined Coxeter groups as a stepping stone to developing the theory of
buildings [17]. Key texts in the study of Coxeter groups, and of particular relevance to this
thesis are The Geometry and Topology of Cozeter Groups by Davis [17], Reflection Groups and
Cozeter Groups by Humphreys [33] and Characters of Finite Cozeter Groups and Iwahori-
Hecke Algebras by Geck and Pfeiffer [27].

For every Coxeter group there is a related Artin group, where the condition that the
generators are involutions is discarded. The Artin group related to the Coxeter group S, is
the braid ground on n-strands, B,. Braids were initially studied in the context of being non-
intersecting closed curves in 3-space (for example, see [2]), but in 1925 Artin introduced many
results on B, including the standard presentation. His motivation was to better understand
the theory of knots and links. As Joan Birman writes :

“It is a tribute to Artin’s extraordinary insight as a mathematician that the
definition he proposed in 1925 for equivalence of geometric braids could ul-
timately be broadened and generalised in many different directions without
destroying the essential features of the theory.”

Joan Birman Braids, links and mapping class groups [T, p.3]

and indeed this theory was generalized in many ways i.e. to theory of algebraic functions
and algebraic equations [29], to theory of knots and links [28] and to monodromy theory in
various forms (for example symplectic monodromy [5]). In 1962 Fox and Neuwirth showed
that the braid group arose as the fundamental group of configurations of n-points on the
plane [24]. This can be rephrased as the fundamental group of a quotient of a hyperplane
complement by the symmetric group S, and in 1971 Artin groups were first introduced by
Brieskorn [9] as the fundamental groups of the quotient of certain hyperplane complements by
corresponding Coxeter groups. Brieskorn was motivated by the result of Fox and Neuwirth,



RESULTS: LOW DIMENSIONAL HOMOLOGY OF COXETER GROUPS 3

alongside conjectures of Tits which speculated that a generalisation of Braid groups in the
sense of hyperplane complements should correspond to the Coxeter groups. His main interest
was the geometric meaning that these groups had, in terms of singularity theory.

Alongside B,,, the free group and the free Abelian group are also examples of Artin
groups. Artin groups can be split into two families: the finite type Artin groups are Artin
groups associated to finite Coxeter groups, and the infinite type Artin groups are Artin groups
associated to infinite Coxeter groups. While many results are known in general for finite type
Artin groups, much is yet to be determined for infinite type Artin groups. There are many
conjectures concerning infinite type Artin groups and one key conjecture in this area is the
K (m,1) conjecture. This conjecture states that the defining hyperplane complements are in
fact classifying spaces for the related Artin groups. A discussion of Artin groups and in
particular the K (7, 1) conjecture is recorded in Paris’s notes on the K (m, 1) conjecture for
Artin groups [40].

Results: Low dimensional homology of Coxeter groups

Define 7(a, b; k) to be a word of length k, given by the alternating product of a and b, i.e.

length k
—
m(a,b; k) = abab. ...
Given a finite generating set S, a Coxeter group W has the following presentation
2

sc=e Vse S
W= <S‘ (s, t;m(s,t)) = w(t,s;m(s,t)) Vs, teS >

where m(s,t) = m(t, s) and m(s,t) is either an integer greater than or equal to 2, or co. We
call |S| the rank of W.

One can package the information given in the presentation of a Coxeter group W into a
diagram called a Coxeter diagram, denoted Dy . It is the graph with vertices indexed by the
elements of the generating set S. Edges are drawn between the vertices corresponding to s
and t in S when m(s,t) > 3 and labelled with m(s,t) when m(s,t) > 4, as shown below:

m(s,t)
° ° —e — o
s t s t s t
m(s,t) =2 m(s,t) =3 m(s,t) >4

In this thesis, variations on this diagram are defined, and Theorems [A] and [B| calculate the
second and third integral homology for any finitely generated Coxeter group W, in terms of
simplicial homologies of these new diagrams. The first theorem is a refinement of a theorem
of Howlett [32], who computed the rank of the Schur multiplier of a finite rank Coxeter group
in 1988. To state this theorem we introduce three new diagrams D44, Deven, and Des.
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e D,qq is the diagram with vertex set S and an edge between s and ¢ in S if m(s,t) is
odd. For example when W is the Coxeter group with Dyy the following diagram

then D,yq is given by

° —o

s t U

® Deyen is the diagram with vertex set S and an edge between s and t in S if m(s,t)
is even and not equal to 2. For example when W is the Coxeter group with Dy the
following diagram

4
—eo—o
S t U
then Deyen is given by
4
°
S t U

e D, is the diagram with vertex set {{s,t} | s,t € S, m(s,t) = 2}. There is an edge
between {s1,t1} and {s2,t2} in Dee if s1 = so and m(ty,t2) is odd. For example
when W is the Coxeter group with Dy, the following diagram

5

° ° ° °
S t U v

then Dee is given by

—eo—o
{s,u}{s, v} {v,t}
THEOREM A. Given a finite rank Cozeter group W, there is a natural isomorphism
HQ(W; Z) = HO(Doo; ZZ) S ZQ[E(Deven)] ¢ H (Dodd; Z?)

where in the first and final term of the right-hand-side the diagrams are considered as simplicial
complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the
diagram).

Computing the rank of the right hand side recovers Howlett’s theorem [32].

EXAMPLE. Let W be the Coxeter group defined via the following diagram
t S
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where we choose this example as it relates to an infinite Coxeter group which is not one
of the classically studied Coxeter groups. Then the subdiagrams and consequent simplicial
homologies representing the second integral homology of W are:

4 S
Dodq : y T H1(Dogq; Z2) =0
v w
4 S
®
4
Deven : Yy or Z2 [E(Deven)] = Z2
[ ] [ ]
v w

{v,t} {s,v} {z,v}

Ho(Deo; Zo) = 7o

@ ® @
{z, 1} {t,w} {s,w} {s,y} {29}

and, hence, Theorem [A] yields
HQ(W;Z) =Zo D Zs.

Our second theorem computes the third integral homology of a finitely generated Coxeter

group. To state this theorem we introduce four new diagrams, Dy,, D Dy, and D5,

even
—s

e Dy, is the diagram with vertex set {{s,t} | s,t € S, m(s,t) = 3}. There is an edge
between {s1,t1} and {sg,ta} in D4, if s1 = s9 and m(t1,t2) = 2. For example when
W is the Coxeter group with Dy, the following diagram

t
:u v
S

then Dy, is given by
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{t,u}

{s,u}  {u,v}

e D _ .. 1is the diagram with vertex set {{s,t,u} | s,t,u € S, m(s,t) = m(s,u) =
2 and m(t,u) is even}. There is an edge between {s1,t1,u1} and {s2,t2,us} in Dy,
if t; = t9, u1 = uz and m(sy, s2) is odd. For example when W is the Coxeter group

with Dy the following diagram
4
° °
st

I
<O
se

then D is given by

even
*>—e

——— °
{s,t,v} {s,t,w} {s,u,w}

e Dy, is the diagram with vertex set {{s,t,u} | s,t,u € S, m(s,t) = m(t,u) =
3 and m(s,u) = 2}. There is an edge between {si,t1,u1} and {so,t2,u2} in Dy,
if t; = t9, u1 = uy and m(sy, s2) = 2. For example when W is the Coxeter group
with Dy the following diagram

° ° ° ® )
S t U v w
then Dy, is given by
{t,u,v}
[ ° °
{87 t7 u} {u? U? w}

e DL is the CW complex formed from the diagram D,e by attaching a 2-cell to every
square. Squares in Dee have the form

(s,t) (u,t)

(s,v)  (u,v)

For example when W is the Coxeter group with Dy the following diagram

S t U w T
™ ’ I ° ®
v

then DS is given by
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{t, w}

{t,v} {s,v} {s,u} {u, 2} {z,v} {v,w}
@ @ L @ L L
{s,w {t,z}

{s,x}

THEOREM B. Given a finite rank Cozeter group W such that Dy does not have a sub-
diagram of the form Y U A1, where Y is a loop in the Coxeter diagram D,qq, there is an
isomorphism

H3(W;Z) = Ho(Dodd; Z2) ® Ho(Day; Z3) © ( ©  Zyyspy) @ Ho(D ., 522)
m(s,t)>3,7#00 ° —so
@( D Zz) D (Ho(DA3;Z2) OH()(DQ.;ZQ)),
W (H3)CW
W(B3)CW

where each diagram is as described above, and viewed as a simplicial complex. In this equation,
O denotes a known non-trivial extension of Ho(Day; Z2) by Ho(Dee; Z2) fully described via
an extension matriz Xy .

If W is such that Dy has a subdiagram of the form Y U Ay where Y is a 1-cycle in the
Cozeter diagram Doqq, then there is an isomorphism modulo extensions

H3(W;Z) = Ho(Doga; Z2) ® Ho(Day; Z3) @ ( ( t)6>93 # Lin(sr)) @ HO(D. cven, 3 L2)
@( D ZQ) D (H[)('DAS; Zg) O Ho(D.o;ZQ))
W(H3)CW
W (B3)CW

@HI(DQDov 22)7
where the unknown extensions involve the Hy(DS); 7o) summand.

The diagrams appearing on the right hand side of the isomorphism are relatively simple
to compute, as shown in the below example.

EXAMPLE. Let W be, again, the Coxeter group defined via the following diagram

VUV o W

Then the subdiagrams and consequent simplicial homologies representing the third integral
homology of W are:
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Doga : y x Hy(Doqq; Za) = Lo

Da, : {t,s}e® ® ® o{w,y} Ho(Day; Z3) = L3
{s,z} {z,w}

D even {.’B,t,y}. o .{’U,t,y} HO(D even ’ZZ) = ZQ @ Z2 @ ZQ

°* o—o {U, t, T °* o—o

Das {t,s,7}0——0——0{x,w,y} Ho(Day;Zo) = Zo

{s,z,w}
{v,t} {s,v} {z,v}
Dee : H)(Deo; Zo) = Zo

[ @ ®
{z 8} {t,w} {s,w} {s,y} {,y}

and Theorem [B] also requires us to count edges with label bigger than 3 but not infinity:

.L. .L.
Yy t Yy v
and subdiagrams of particular shapes, of which we have three:
4 4 5
[ L 4 o O L 4 o © 4 @
Yy t s 1 Yy w v Y w

We note that D,gq has no loop in it. Putting this all together, for the Coxeter group W
related to Dy we have from Theorem [B| that the third integral homology is the sum of the
right hand column, with a known non-trivial extension, plus a summand for each of the edges
and the subdiagrams highlighted above

HsW;Z) =72 @73 ® (Lo ® Lo ® L) DLy ® (Zy ® Zs) B (Zo ® Lo D ZLs3).
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These results arise from the computation of the isotropy spectral sequence, for a con-
tractible CW-complex upon which the Coxeter group acts, called the Davis complex. The
spectral sequence computations rely heavily on a free resolution for Coxeter groups, described
by De Concini and Salvetti in Cohomology of Coxeter groups and Artin groups [18]. The com-
puter algebra package PyCox is used to complete some of the longer calculations required, and
an overview of this Python package can be found in PyCoxz: Computing with (finite) Cozeter
groups and Iwahori-Hecke algebras by Geck [26].

We note here that in an unpublished paper Cohomology of some Artin groups and monoids
by Ellis and Skoéldberg [23], they remark on page 20 that the PhD thesis Homology of Cozeter
groups and related calculations by J. Harris at NUI Galway contains a calculation of the third
integral homology of a Coxeter group. This remark is also mirrored in Example 3 of Polytopal
resolutions for finite groups by by Ellis, Harris and Skoldberg [22].

Results: Homological stability for Artin Monoids

The main influencing factor for selecting this topic of study, as well as the inspiration for
much of the set up for the proof, was Hepworth’s Homological Stability for Families of Cozeter
Groups [31].

For every Coxeter group W there is a corresponding Artin group Ay, with presentation

Ay = (o5 for s € S| m(os,00,m(s,t)) = 7(o, 05;m(s, 1)), Vs, t € S).

Here we note that the Coxeter diagram Dy also contains all the information on the Artin
group presentation. The Artin monoid A‘TV of an Artin group Ay associated to a Coxeter
group W is defined to be the monoid with the same presentation as A:

Al = (o, for s € S| m(os,00m(s,t)) = w(or, 05;m(s, 1)), Vs, t € S)T.
A family of groups or monoids
Gi—>Gy— - > Gy — -
is said to satisfy homological stability if the induced maps on homology
H;(BG,) — H;(BGp+1)

are isomorphisms for n sufficiently large compared to i.

The topic of homological stability has been widely studied since the latter half of the
twentieth century, with classical examples being homological stability for the sequence of:
symmetric groups S,, by Nakaoka [39]; general linear groups GL,, by Maazen [35] and Van
der Kallen [45]; and braid groups B,, by Arnol’d [4]. These classical examples are all proofs of
homological stability for sequences of discrete groups, but the scope of homological stability
results is much broader than this, and there are numerous examples of groups and spaces
which satisfy homological stability and closely related phenomena. Recently, work of Basterra,
Bobkova, Ponto, Tillmann and Yeakel, defines and studies homological stability for operads
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[6], and work of Galatius and Randal-Williams [25] has focused on homological stability
results for moduli spaces of manifolds.

In many cases where homological stability is known it is difficult to compute the homology
of a group in the sequence in general. However there are techniques to compute the stable
homology of the sequence and due to the homological stability result this gives us infinitely
many new computations of the group homology. The question of the stable homology is not
addressed in this thesis.

The theory of homological stability has been enclosed in a generalised framework during
the past few years. Recent work by Randal-Williams and Wahl [42] presents a categorical
framework for homological stability results for discrete groups, and work of Krannich [34]
generalises this to a framework in the context of Fs-algebras. However both of these frame-
works still require a proof of high connectivity, arguably the most difficult and non-standard
part of a homological stability proof, to be inserted in order to yield results.

Our result concerns a sequence of Artin monoids with the braid monoid as a sub-monoid.
The maps are given by inclusions corresponding to increasing the number of generators of the
braid sub-monoid. In this case the sequence of Coxeter diagrams relating to the corresponding
Artin groups is as follows

o C .. s /727 Ny o *——o -
| 1 o9 1 02 On—1 On

Ay Az Ap

THEOREM C. The sequence of Artin monoids
+ + +
AT Ay — o= A — -
satisfies homological stability. That is, the induced map on homology

H.(BAY_,) > H.(BA})

is an isomorphism when x < § and a surjection when x = 5. Here homology is taken with

arbitrary constant coefficients.

As far as we are aware, this is the only homological stability proof for a sequence of
monoids that are not groups, though often homological stability results for groups will imply
results on the homology of associated monoids. In particular when the Ore condition holds
there is a homotopy equivalence between the classifying spaces of the group and the monoid.
In our case, this equivalence is true if and only if the K (7, 1) conjecture holds and therefore we
deduce a homological stability result in an unconventional direction: from monoids to groups.

COROLLARY D. Suppose the K(mw,1) conjecture holds for the sequence of Artin groups

Al = Ay — - Ay — -
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then the sequence satisfies homological stability, with the same range as in Theorem [,

Homological stability was demonstrated for the finite type families of Artin groups of the
form we study, via a computation of their full cohomology by Arnol’d, written in the Bourbaki
paper Sur les groupes des tresses by Brieskorn [10].

The key step in the proof of the theorem is to show that a certain family of semi-simplicial
spaces on which the monoids A; act is highly connected. To define this family of spaces and
prove the related connectivity requires simplicial set theory, following the recent and very
useful text Semi-simplicial spaces by Ebert and Randal-Williams [21]. The proof of high
connectivity follows a union of chambers argument, as in many proofs of homological stability.
This argument was particularly influenced by a high connectivity argument in Paris’s notes
on the K(m, 1) conjecture for Artin groups [40]. This argument comprises the most technical
part of the proof and utilises monoid theory, in particular following theory for Artin monoids
from Brieskorn and Saito’s Artin Gruppen und Cozeter Gruppen [11].
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CHAPTER 1

Background: Coxeter groups

This chapter follows The Geometry and Topology of Coxeter Groups by Davis [17].

1.1. Definition and examples

DEFINITION 1.1.1. A Cozeter matriz on a finite set of generators S, is a symmetric matrix
M indexed by elements of S, i.e. with integer entries m(s,t) for {s,t} in S x S. This matrix
must satisfy

e m(s,s)=1forall sin S
o m(s,t) =mf(t,s)
e m(s,t) must be either greater than 1, or oo, when s # t¢.

DEeFINITION 1.1.2. A Coxeter matrix M has an associated Coxeter group, W, with pre-
sentation

W = (S|Vs,t €8, (st)™t) = e).

We call (W, S) a Coxeter system, and we call |S| the rank of W. We adopt the convention
that (W, () is the trivial group.

REMARK 1.1.3. Note that the condition m(s,s) = 1 on the Coxeter matrix implies that
the generators of the group are involutions i.e., s = e for all s in S.

DEFINITION 1.1.4. Define the length function on a Coxeter system (W, S)
£: W =N

to be the function which maps w in W to the minimum word length required to express w in
terms of the generators. That is, we set {(e) = 0, and if w # e is in W then there exists a
k > 1 such that w = s1...s; for s; in S. We choose minimal k satisfying this property and
set f(w) = k.

EXAMPLE 1.1.5. If m(s,t) > 3 then {(sts) = 3 whereas if m(s,t) = 2 then
sts = s(ts) = s(st) = (s*)t =t
and so {(sts) = (t) = 1.

14
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DEFINITION 1.1.6. Define 7(a,b; k) to be a word of length k, given by the alternating

product of a and b i.e.
length k

—N—
m(a,b;k) = abab. ..

REMARK 1.1.7. The relations (st)™(*?) = e can be rewritten by left multiplying by s and
t in turn and using the fact that the generators are involutions to get

(s, t;m(s,t)) = mw(t,s;m(s,t))

when m(s,t) # oo. For example when m(s,t) = 3, the relation (st)® = e can be rewritten as
sts = tst. Therefore the presentation of a Coxeter group W can also be given as

W:<S‘ (s)’=e VSES>.
(s, t;m(s,t)) = w(t,s;m(s,t)) Vs, teS

DEFINITION 1.1.8. Given a Coxeter matrix corresponding to a Coxeter system (W,S),
there is an associated graph called the Cozeter diagram, denoted Dyy. It is the graph with
vertices indexed by the elements of the generating set S. Edges are drawn between the vertices
corresponding to s and ¢ in S when m(s,t) > 3 and labelled with m(s,t) when m(s,t) > 4,
as shown below:

m(s,t)
° ° —eo —o
s t s t s t
m(s,t) =2 m(s,t) =3 m(s,t) >4

When the diagram Dyy is connected, W is called an irreducible Coxeter group.

EXAMPLE 1.1.9. The Coxeter group with one generator W = (s|s? = e) is the cyclic group
of order 2. We call this the Coxeter group of type A;. Its diagram Dy is given by

[ ]
S

ExXAMPLE 1.1.10. The symmetric group S, is an example of a Coxeter group: it is iso-
morphic to the Coxeter group of type A,_1, which has the following diagram

We consider the isomorphism which sends a generator s; to the transposition (i, ¢ + 1). If
two transpositions are disjoint they commute, whereas transpositions

sisigr = (i, i+ 1)(i+1, i4+2)=(, i+1, i+2)

form a 3-cycle and therefore s;s;41 has order 3 for all 1 <4 <n — 2. This corresponds to the
relations given by the Coxeter diagram of type A,_1, for the symmetric group presentation:

Sy = ({51, sn_1}|57 = e Vi, (s;5))> = e V|i — j| > 2, (sisi41)° = e V1 <i < (n — 2)).
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EXAMPLE 1.1.11. The dihedral group Dsy,, of order 2p, is an example of a Coxeter group:
it is isomorphic to the Coxeter group of type I2(p), which has the following diagram:

p
*—
S t
and here we note that if p is 2 then the edge is not included in the diagram. The group Do,
can be viewed as the group of symmetries of a 2p-gon, and to present it as a Coxeter group
we exhibit a set of generating reflections. For instance the Coxeter group of type I2(3) has

the following diagram

—o
S t

and correspondingly the dihedral group Dg can be generated by reflections on the hexagon as
depicted in the diagram below:

where we note that the reflections s and ¢ both have order 2, and composing the reflections
corresponds to rotation by 27/3, so (st)? is the identity. This agrees with the labels (or lack
thereof) in the Coxeter diagram, and corresponds to the following presentation of Dg:

Dg = ({s,t}|s* =t> =, (st)3 =¢).

The examples we have considered have been those of finite Coxeter groups though of
course, Coxeter groups are usually infinite (for instance any Coxeter group with an co in the
corresponding Coxeter matrix is infinite). There is also a notion of Coxeter groups with an
infinite number of generators, but we do not approach this in this thesis. Coxeter completely

classified the irreducible finite Coxeter groups in 1935 [15]. There are four infinite families of
finite Coxeter groups, and six exceptional finite Coxeter groups.

THEOREM 1.1.12 (Classification of finite Coxeter groups, Coxeter [15]).

A Cozxeter group is finite <= it is the (direct) product of finitely many finite irreducible Cozxeter grouy
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The following is a complete list of the diagrams corresponding to finite irreducible Coxeter
groups, and therefore completely classifies finite Coxeter groups.

Infinite families Ezceptional groups
A F 4
n *—eo—o: - -0—0 4 *——eo—o0—o
4 5
Bn *—=—o: - 0—0 H3 *——eo——o
D, :>—~ e H, oio—o—o
p

Es

DEFINITION 1.1.13. We say that a finite irreducible Coxeter group W is of type D if its
corresponding diagram is given by D, and we denote this Coxeter group W (D).

As we have seen in Examples [1.1.10] and [1.1.11] the Coxeter group of type A,, or W(4,),
corresponds to the symmetric group S,+1 and the Coxeter group of type Iz(p), or W (I2(p)),
corresponds to the dihedral group Ds,. Similarly, the Coxeter group of type B, or W(B,,),
corresponds to the signed permutation group Zs ! S, (the A,_; subdiagram present inside
the diagram for B,, corresponds to the S, subgroup of Zs ! S,). The Coxeter group of type
D,,, or W(D,,), corresponds to an index two subgroup of type B,,, such that the signs in each

permutation multiply to +1 (sign changes are even).

1.2. Products and subgroups

Consider two Coxeter systems (U, Sy) and (V,Sy). We will denote Dy LI Dy by the
diagram created by placing the two corresponding diagrams Dy and Dy beside each other,
disjointly.
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LEmMA 1.2.1. With notation as above, the diagram Dy U Dy corresponds to taking a
product of Coxeter groups U x V, and defines another Coxeter group W =2 U x V, which has
diagram Dy = Dy U Dy and generating set Sy := Sy USy. The Cozeter relations are given
by those for (U, Sy) and (V,Sy), and letting m(sy, sy) = 2 for all s, in Sy and s, in Sy.

PROOF. The generating set and relations for (W, Sy) can be read off the Coxeter diagram
Dw = Dy UDy. In particular, since there are no edges between the subdiagram Dy and the
subdiagram Dy, m(sy, sy) = 2 for all s, in Sy and s, in Sy. Since the generators from Sy
and Sy commute pairwise, any word w in W can be written as w = uv for v in U and v in
V. Then the group W is isomorphic to the product group U x V via the map

W =z UxV

w=uv — (u,v).
g

ExXAMPLE 1.2.2. The finite Coxeter group of type I2(2) is an example of a product of
Coxeter groups. Its diagram has the form
° °
S t
and so it is in fact isomorphic to the product of the Coxeter group of type A; with itself:
the group W (A1) x W(A;1). The product group has two generators, both with order 2, that
commute, and is therefore isomorphic to the product of cyclic groups Zs X Zs.

DEFINITION 1.2.3. We say that an inclusion of Coxeter diagrams Dy < Dyw is full if for
every two vertices s and ¢ in Dy, m(s,t) is the same in Dy as it is in Dy. In other words, if
two generators are in Sy then they are also in Sy (via the inclusion map) and we insist that
the edge between them is the same in Dy as it appears in Dyy. In this setting we call Dy a
full subdiagram of Dyy.

DEFINITION 1.2.4. Let (W, S) be a Coxeter system. For each 7' C S denote by Wr the
subgroup of W generated by 7. Denote the diagram corresponding to this subgroup by Dyy,..
We call subgroups that arise in this way parabolic subgroups.

PROPOSITION 1.2.5 (see Davis [17), 4.1.6.(i)]). For Wr a parabolic subgroup, (Wrp,T) is a
Cozeter system in its own right, and defines a full inclusion Dy, — Dyy. Similarly, a full
inclusion corresponding to a parabolic subgroup.

Throughout this writing, many of the results and theory are inspired by or correspond to
the theory of cosets in Coxeter groups. The next result concerns cosets of parabolic subgroups.
Let (W, S) be a Coxeter system, and T, T” be subsets of S.
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LEMMA 1.2.6 (see Davis [17), 4.3.1]). There is a unique element w of minimum length in
the double coset WrwWr. More precisely, any element in this double coset can be written as
awa’ where a is in Wy, ' is in Wy and £(awa’) = £(a) + l(w) 4+ £(a’).

DEFINITION 1.2.7 (see Davis [17, 4.3.2]). We say an element w in W is (T, T")-reduced if
w is the shortest element in WpwW.

REMARK 1.2.8. Given the parabolic subgroup Wy in W, w in W is (T,()-reduced if
L(tw) = L(t) + L(w) = 1+ L(w) for all ¢ in T. Note that this means that the word w
cannot be rearranged to start with the letter t. Likewise we say w in W is (0, T)-reduced if
l(wt) = l(w) + 1 for all ¢ in T'. Similarly this means that the word w cannot be rearranged
to end with the letter ¢.

DEFINITION 1.2.9. A finite parabolic subgroup is called a spherical subgroup.

Since the diagrams of parabolic subgroups appear as full subdiagrams of the Coxeter
diagram, for a Coxeter system (W, S) we can identify its spherical subgroups by identifying
occurrences of the irreducible diagrams from Theorem in Dy, and disjoint unions of
such diagrams.

ExampPLE 1.2.10. Consider the Coxeter group W corresponding to the following diagram
t

S
Then W is infinite: one way to view this is by considering W as the group of symmetries of
the Euclidean plane tiled by equilateral triangles, with generators s, ¢t and u corresponding to
reflections in the three edges of a chosen ‘fundamental’ triangle. Then for any other triangle
in this tiling there is a word in W mapping the fundamental triangle to the chosen triangle,
and so one can observe that the group is infinite. The spherical subgroups of W are given by
the following subdiagrams (of type A; and Asg), as well as the trivial group Wj.

DEFINITION 1.2.11. We denote by S the set of all subsets of S which generate spherical
subgroups of W, i.e.
S ={T C S| Wr is finite}.

We will sometimes refer to an element 1" of S as a spherical subset.

REMARK 1.2.12. Let s,t in S. We note that every one-generator subgroup Wy, for s in
S satisfies that Wy, is of type A1, and so is finite. For the remainder of this thesis we write
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Wy for Wi,y Furthermore when m(s,t) # oo, Wy, is of type I2(m(s,t)), which is a finite
subgroup, so every edge not labelled by oo in Dy, represents a finite group. Finally we note
that, since we adopted the convention that the group with no generators and no relations is
the (finite) trivial group, () is always present in S.

LEMMA 1.2.13 (see Davis [17), 4.6.1]). If W is a finite Cozeter group generated by S, there
is a unique element wo of longest length in W, satisfying £(swo) < €(wg) for all s in S.

It follows that every spherical subgroup Wr of a Coxeter group W has a longest element.

1.3. The Davis complex

Recall that subsets of S generate subgroups of W and these are known as parabolic sub-
groups, denoted Wy, for T' a subset of S. If a parabolic subgroup is finite we call it a spherical
subgroup and we denote the set of all subsets of S which generate spherical subgroups of W
by S.

DEFINITION 1.3.1. A coset of a spherical subgroup is called a spherical coset. For a Coxeter
system (W, S) and a subgroup Wr we denote the set of cosets as follows:

W/WT = {wWT]w € W}
The set of all spherical cosets is denoted WS:
ws =) w/wr.
TeS

WS is partially ordered by inclusion and so can be considered as a poset. The group W acts
on the poset WS by left multiplication and the quotient poset is S.

LEMMA 1.3.2 (see Davis [17, 4.1.6.(iii)]). Given T and U in S and w and v in W, the
cosets wWy and vWy satisfy wWy C vWr if and only if w™'v € Wy and U C T.

DEFINITION 1.3.3 (see Davis [17, 7.2]). We can associate to any poset P, its geometric
realisation. This is given by the geometric realisation of the abstract simplicial complex
Flag(P) which consists of all finite chains in P. The reader is directed to Appendix A of
Davis for more details.

DEFINITION 1.3.4 (see Davis [17, 7.2]). One can associate to a Coxeter group a CW
complex called the Davis Complex. This is denoted Xy and is the geometric realisation of
the poset WS. That is every spherical coset wWr is realised as a vertex or 0-simplex, and for
every ordered chain of (p + 1) spherical cosets, with p > 0 there is a p-simplex in the Davis
Complex:

wOWTo C w1WT1 C UJQWT2 c---C prTp

where here w; is in W and T; is in S for all 0 < i < p.
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ExaMpPLE 1.3.5. We work through the construction of the Davis complex for the Coxeter
group W = W (I3(3)) which we recall from Example|l.1.11|to be the dihedral group Dg. Then
Dy is given by

*——0
S t

and so spherical subgroups are given by the subdiagrams that correspond to finite subgroups,
that is

S ={0,s,t,S}.

Considering the spherical cosets and inclusions, we have, for example, eWj; C eW, C eWWg and
so a 2-simplex is formed. Considering all such inclusions and constructing the Davis complex
gives the following:

sWy ——— eW, «—— el

/ \

sWy eWy
stWy > eWg < tWy
stWy tW

\ /

tstWy ——— tsW; «—— tsWj

where the circles symbolise vertices, the arrows symbolise inclusions and 1-simplices and the
orange triangles symbolise 2-simplices. The Coxeter group W = W (I3(3)) acts on the Davis
complex by left multiplication of the cosets and the action of the two generators s and ¢t on
the complex is shown below in blue:
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sWyp —— eW, «— el

tstWy —— tsW; «—— tsWj

DEFINITION 1.3.6 (see Davis [17, A.1.1]). A convex polytope in an affine space A is the
convex hull of a finite subset of A. Its dimension is given by the dimension of the subspace of
A which it spans. Equivalently, a convex polytope may be defined as the compact intersection
of a finite set of half spaces in A.

REMARK 1.3.7. A 0-dimensional convex polytope is a point, a 1-dimensional convex poly-
tope is a line segment, and a 2-dimensional convex polytope is a polygon. In general, a
k-dimensional convex polytope is homeomorphic to a k-disk.

DEFINITION 1.3.8. For every finite Coxeter group W with generating set .S, one can define
a canonical representation of the Coxeter group W on R", where n = |S| (see Davis section
6.12 for details). Given this representation, we define the Cozxeter polytope, or Cozeter cell of
W to be the convex hull of the orbit of a generic point x in R™ under the W-action. This
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polytope has dimension n = |S|, and we denote it Cyy. A detailed definition can be found in
Davis section 7.3 [17].

ProproSITION 1.3.9. If W is a finite Cozeter group then Xy, the geometric realisation of
WS, is isomorphic to the barycentric subdivision of the Coxeter cell Cyy.

PROOF. The proof follows from Davis Lemma 7.3.3 [17]. O

DEFINITION 1.3.10. A coarser cell structure can be given to Yy by considering only those
spherical cosets which are present as subsets of a particular coset wWp. This is denoted
W S<ww,, and the realisation of this poset is a subcomplex of the realisation of WS, i.e. a
subcomplex of Xyy. In fact WS<w,, = WSt where St denotes the set of spherical subsets
of T'. Since Wr is finite, the realisation of WSy, is isomorphic to the barycentric subdivision
of its Coxeter cell Cyy,.. Therefore the realisation is homeomorphic to a disk, i.e. |WpSy| =
DITI. The cell structure on Sy is therefore given by associating to the subcomplex WS<ww,
its corresponding Coxeter cell: a p-cell where p = |T'|. The 0-cells are given by cosets of
the form WS<,w,, ie. the set {wWpylw € W}, and therefore associated to elements of W
(recall Wy = {e}). By Lemma a set of vertices X will define a p-cell precisely when
X ={veWlvewWr}forT €S and |T| = p. There is an action of W on the cells of Xy
given by left multiplication, and this permutes the cells.

ExamMpPLE 1.3.11. We consider the above cell structure for our running example of W =
W (I2(3)), noting the action of the generators of W in blue. There are six 0-cells, six 1-cells and
one 2-cell, corresponding to spherical cosets with generating sets having 0, 1 and 2 elements
respectively.



1.3. THE DAVIS COMPLEX 24

Alongside the formulation and cell structure, we use the following results concerning the Davis
complex in Chapter

PROPOSITION 1.3.12 (Davis [17, 8.2.13]). For any Cozeter group W, Xy is contractible.

LeMMA 1.3.13 (Davis [17, 7.4.4]). If W and S decompose as W = U xV and S = SyUSy
then S = Sy x Sy and Yy = Xy X Xy



CHAPTER 2

Results: Low dimensional homology of Coxeter groups

In this chapter we prove two theorems which calculate the second and third integral
homology of a finite rank Coxeter group. These results arise from the computation of the
isotropy spectral sequence, for a contractible CW-complex upon which the Coxeter group acts,
called the Davis complex. For the degree three result, the spectral sequence computations
rely heavily on a free resolution for Coxeter groups, described by De Concini and Salvetti in
Cohomology of Cozeter groups and Artin groups [18].

2.1. Discussion of results

Given a Coxeter system (W, S), let the corresponding Coxeter diagram be denoted Dyy .
Let us first consider Hy(W;Z) = Wapelian, the abelianisation of W.

DEFINITION 2.1.1 (see Brown [12] III.1]). Let G be a group and F' be a projective reso-
lution of Z over ZG. For a G-module M we define the group homology of G with coefficients
i M to be

H(G; M) = H(F ®c M).

LEMMA 2.1.2. Let (W, S) be a Coxeter system. Let s ~ s if there is a sequence s =
50,81, ---,8n = & of elements of S such that m(s;, s;+1) is an odd integer. Then ~ defines
an equivalence relation on S and it follows that s and s’ represent the same element of the
abelianisation of W if and only if s ~ s'.

PRrROOF. From Lemma 3.3.3 in Davis [17], s ~ s if and only if s and s’ are conjugate.
Since conjugate generators must be sent to the same element of the abelianisation the proof
follows. O

COROLLARY 2.1.3. As a consequence of Lemma Hy(W;Z) can be described by delet-
ing even or infinite edges from the Coxeter diagram and counting the connected components
of the remaining diagram. If there are d components then it follows that

Hl(W; Z) = Wabelian = Zg

In [32], Howlett considers the Schur multiplier - which in this case is isomorphic to the
second homology group Hs(W;Z) - of finite rank Coxeter groups. We describe the result
below.

25
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DEFINITION 2.1.4. Let See = {{s,t}|m(s,t) = 2} be the set consisting of unordered pairs
of commuting generators. Let {s,t} = {s,t'} if both pairs belong to See, and m(t,t") is odd.
Let ~ be the equivalence relation on See generated by ~.

Let Dee be the graph with vertex set indexed by See and an edge between the two vertices
corresponding to {s,t} and {s,t'} if {s,t} ~ {s,t'}. Then the equivalence classes of ~ are
given precisely by the connected components of De,.

Let D,qq be the diagram obtained from Dy, by deleting all edges with an even label,
or with an oo label, and Deyep, similarly (here we also delete the unlabelled edges as they
correspond to m(s,t) = 3). Let E(Dw ) and V(Dy ) be the set of edges and set of vertices of
Dy respectively. Let

e n1 (W) be the number of vertices of Dy

e no(W) be the number of edges of Dy carrying a finite weight
e n3(WW) be the number of equivalence classes of ~ on See

e n4(W) be the number of connected components of D,qq.

THEOREM 2.1.5 (Howlett [32]). The Schur multiplier of W is an elementary abelian 2-
group with rank

ng(W) + 7”L3(W) + TL4(W) — nl(W)

The first theorem we prove in this text is a refinement of Howlett’s theorem, based on the
isotropy spectral sequence for the Davis complex, including a naturality statement.

THEOREM 2.1.6. Given a finite rank Coxeter group W with diagram Dy, there is a natural
isomorphism
Hy(W;Z) = Ho(Dee; Z2) ® Zo[E(Deven )] ® Hi(Dodd; Z2)
where in the first and final term of the right-hand-side the diagrams are considered as simplicial
complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the
diagram).

REMARK 2.1.7. The naturality statement comes from the fact that, given a full inclusion
of Coxeter groups U — W, there is a full inclusion of Coxeter diagrams Dy < Dy with
respect to which the assignments D — Dygq, D — Deyen and D — Do are natural. That
is, a full inclusion Dy < Dy induces a full inclusion of the diagrams Dyggq, Deven, and Dee.
The naturality of simplicial homology H.,(—;Z2) with respect to sub-complexes of simplicial
complexes therefore induces a component wise natural map on the right hand side of the
isomorphism.

PROPOSITION 2.1.8. This theorem recovers Howlett’s theorem.

PrOOF. We compute the rank of each of the summand on the right hand side of Theorem
2.1.6

o rank(Ho(Dee; Z2)) = ng(W) by Definition 2.1.4]
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o rank(Zs[E(Deyen)]) = |E(Deven)|-
o rank(H1(Dyqq; Z2) = rank(ker(dy)/im(ds)) = null(d;) — rank(ds) where d; and ds
are the simplicial boundary maps:

C(Doda) 2 C1(Dodd) 2 Co(Doda)

0 -2 Zo|E(Dota)] 2 Zo[V (Doda)].

It follows that
— rank(d;) grows by 1 for each vertex connected to an edge in D,q4q4, subject to the
relation that the vertices of a component of D,4q are identified (this decreases
the dimension of the image by one for each non-trivial component of D,qq). A
vertex which is not connected to an edge in D,4q has its own component in D,g4q.
Therefore rank(d;) = ny (W) — ng(W).
— null(dy) + rank(d;) = dim(C1(Dega)) = |E(Doad)| so null(dy) = |E(Dyaq)| —
rank(dy) = |E(Dygq)| — n1 (W) + ng(W)
— rank(dz) = 0.
— null(dl) — rank(dg) = |E(Dodd)’ — nl(W) + n4(W)
Therefore the rank on the right hand side of Theorem [2.1.6] is given by
rank(Ho(D..; ZQ) D Zo [E(Deven)] @ Hy (Dodd; Z2))
= rank(Ho(Dee; Z2)) + rank(Za[E(Deyen)]) + rank(H1(Dogq; Z2)))
n3(W) + |E(Deven)| + |E(Doda)| — na(W) + na(W)
n3(W) + (|E(Deven )| + [E(Doda)|) — ni(W) + na(W)
= ng(W) + na(W) — ny (W) + ng(W)
as required. O

ExXAMPLE 2.1.9. An example of Theorem for an infinite Coxeter group can be found
in the introduction to this thesis.

EXAMPLE 2.1.10. When the Coxeter group W is the finite group of type A3 we have that
Dy is

*—0—0

s t u
and so D,qq is Dw, Deyen i

[ J [ ] [ ]

s t u

and Dee 1S

{s,u)
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Computing the terms in the right hand side of the isomorphism of Theorem therefore
gives:
H2(W; Z) = HO(DQQ§ ZQ) D Zo [E(Deven)} @ Hy (Dodd§ Z2)
= Zy®0®0
= Zo.

ExAMPLE 2.1.11. Consider the Coxeter group W defined by the following diagram Dy :

°
S t w
then the diagram Dy, is
U
A_. °
S t v w
the diagram Deyep, is
U
°
S t 4
° ° ——o
v w

and the diagram D,, is

{u,w} fu0)

S,
{s,w} {t,w} )
Computing the terms in the right hand side of the isomorphism of Theorem therefore
gives:
H2(W; Z) = HO(D..; ZQ) D Zo [E(Deven)} @ Hy (Dodd§ Z2)
= (Zo®Zy) ® Ly @ Zo.

Using similar methods we compute the third homology of a finite rank Coxeter group.

In the majority of cases we have a full description for H3(W;Z), and for a specific type of

Coxeter diagram we have the result modulo extensions. The statement of the theorem relies
on introducing more diagrams derived from the Coxeter Diagram Dy, described below.

DEFINITION 2.1.12. Suppose W is a finite rank Coxeter group and Dy is its diagram. We
define diagrams that arise from Dy as follows.
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e D,qq is the diagram with vertex set S and an edge between s and ¢ in S if m(s,t) is
odd. For example when W is the Coxeter group of type Bs with diagram

then Dy,yq is given by
° —eo
o D, is the diagram with vertex set {{s,t} | s,t € S, m(s,t) = 3} i.e. the set of pairs of
vertices which appear in an Ay subdiagram of Dyy. There is an edge between {s1, 11}

and {sg,ta} in Dy, if s1 = s9 and m(t1,t2) = 2 i.e. if the two Ag subdiagrams are not
equal, and fit into an Az subdiagram of Dy,. For example when W is the Coxeter

{t, u}

/N

{s,u}  {u,v}

e D is the diagram with vertex set {{s,t,u} | s,t,u € S, m(s,t) = m(s,u) =

even

group of type D4 with diagram

then Dy, is given by

2 .ar.lg.m(t, u) is even} i.e. the set of triples of vertices which appear in an A; x I2(2p)
subdiagram of Dyy. There is an edge between {si,t1,u1} and {sa,ta,us} in Dy, if
t1 = to, u1 = ug and and m(sy, s2) is odd i.e. if the two A; x Iz(2p) subdiagrams are
not equal, and appear as subdiagrams of an Is(odd) x Iy(even) subdiagram of Dyy.
For example when W is the Coxeter group of type Bs with diagram

4

®
S

1 )

° ° °
t U w

then D is given by

even
>—e

—o °
{s,t,v} {s,t,w} {s,u,w}

e D, is the diagram with vertex set {{s,t} | s,t € S, m(s,t) = 2} i.e. the set of pairs
of commuting vertices which appear as an A; x A; subdiagram of Dyy. There is
an edge between {si,t1} and {so,ta} in Dee if 51 = s2 and m(ty,t2) is odd i.e. if
the two subdiagrams are not equal, and appear as subdiagrams of an A; X Iz(odd)
subdiagram of Dyy. For example when W is the Coxeter group of type Hy with
diagram
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5

then Dee is given by

{s,u}{s,v} {v,t}

e Dy, is the diagram with vertex set {{s,t,u} | s,t,u € S, m(s,t) = m(t,u) =
3 and m(s,u) = 2} i.e. the set of triples of vertices which appear in an Az sub-
diagram of Dyy. There is an edge between {si,t1,u1} and {so,ta,us} in Dy, if
t1 = sa, u1 = to and m(s1,u2) = 2 i.e. if the two Az subdiagrams are not equal, and
fit into an A4 subdiagram of Dyy. For example when W is the Coxeter group of type
As with diagram

[ 4 . 4 ol . 4 N
S t U v w
then Dy, is given by
{t,u,v}
° ® °
{37 t7 u} {u? /U7 w}

e DL} is the CW complex formed from the diagram D,, by attaching a 2 — cell to every
square. Squares in Dee have the form

{s,t}  A{u,t}

{s,v} A{u,v}

For example when W is the Coxeter group of type Eg with diagram

S t U w T
[ 4 . 4 I . 4  J
v

then DL} is given by

{t, v} {s,v} {s,u} {u, 2} {z,v} {v,w}
[ L 2 L 4 L 2 @ L
{s,w {t,z}

{s,x}

THEOREM 2.1.13. Given a finite rank Cozeter group W such that Dy does not have a
subdiagram of the form Y U Ay, where Y is a loop in the Coxeter diagram D,qq, there is an
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isomorphism

H3(W;Z) = Ho(Doad; Z2) ® Ho(Day; Z3) © (@ Zyy(sy) ® HO(D. sven i Za)

m(s,t)>3,7#00
@( EB ZQ) @ (HO(DAS;ZQ) OH()(D..;ZQ))
W (H3)CW
W (B3)CW

where each diagram is as described in Definition and viewed as a simplicial complez.
In this equation, () denotes a known non-trivial extension of Hy(Day;Z2) by Ho(Dee; Za2)
gwen by the extension matriz Xw defined in Definition [2.5.53

If W is such that Dy has a subdiagram of the form Y U Ay where Y is a 1-cycle in the
Cozeter diagram Doqq, then there is an isomorphism modulo extensions

H3(W;Z) = Ho(Dodd; Z2) ® Ho(Day; Z3) © ( ®  Lpsp) @ HO(D. cven 1 Z2)

m(s,t)>3,7#00
S( @& 7o) ® (Ho(Day; Z2) O Ho(Des; Z2))
W(Hz)CW
W(B3)CW

@Hl(DoDo7 ZZ)v
where the unknown extensions involve the Hy(DS); Zs) summand.

These results arise from computation of the isotropy spectral sequence, which will be
introduced in this Chapter, for the Davis complex 3. These computations rely heavily on
a free resolution for Coxeter groups as written by De Concini and Salvetti in Cohomology of
Cozxeter groups and Artin groups [18]. We give some example computations below.

EXAMPLE 2.1.14. An example of Theorem [2.1.13] for an infinite Coxeter group can be
found in the introduction to this thesis.

ExAMPLE 2.1.15. Consider the Coxeter group W of type Az defined by the following
diagram Dyy:

*r—o——0
s t u

then the diagram D,q, is Dy and the diagram D, is

{s,u}

the diagram Dy, is
{37 t} — {t7 u}

the diagram Dy, is

{s,t,u}
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is the empty diagram. We also note that

evern

the diagram DL, = D, and the diagram D
there are no edges with label greater than 3, and no Hs or Bs subdiagrams. We see there is

no loop in the diagram D,4q and therefore we are in the first case of the theorem. Computing
the terms in the right hand side of the isomorphism of Theorem [2.1.13| therefore gives:

H3(W;Z) = Ho(Doqd; Z2) ® Ho(Day; Z3) © (D Zpysp)) © Ho(D Z3)

ceven
m(s,t)>3,700 o« %

S @©  Zz) @ (Ho(Day; Zz) O Ho(Dee; Z2))
W(H3)CW
W (B3)CW

= ZoPDZ3d0BO
S 0D (Z2 O Zo)
= Zo®Z3®
Y
= Zi2® ZLs.

EXAMPLE 2.1.16. Consider the Coxeter group W defined by the following diagram Dy :

V2
)

then the diagram D,y is

°
S ¢ b w
the diagram D, is
U, W
ol {u, v}
8,V
{s,w} {t,w} e}

the diagram Dy, is

—eo °
{s,t} {t,v} {s,u}
the diagram D4, is

{s,t,v}

the diagram D5, = Dee and the diagram D . is
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{u,v,w}

{s,v,w}
We also note that there are two edges with label greater than 3, and one B3 subdiagram:
4
— oo
t by w

We see there is a loop in the diagram D,qq and a vertex disjoint from this loop (w) in Dy,
therefore we are in the second case of the theorem. Computing the terms in the right hand
side of the isomorphism of Theorem [2.1.13| therefore gives:

H3(W;Z) = Ho(Doda; Z2) © Ho(Day; Z3) © (m(s t)€>93 #OoZm(s,t)) @ Ho(D, ooy 22)
@( D Zg) D (HO(DAg;ZQ) OH()(D..;ZQ))
W(H3)CW
W (B3)CW

®H1(De; Z2)
= (Z2©Z) ® (23D L) © (24 ® Z7) @ (Zoa)
(Za) © (Zo O (Z2 @ Z2))

@®Zo modulo extensions

and here the extension (Zgo O (Ze ® Zs2)) is given by Z4 @ Zo.

2.2. Outline of proof

We introduce the isotropy spectral sequence in Section and specifically describe the
spectral sequence for the Davis complex of W, Xy, in Section [2.3.14] This spectral sequence
abuts to the homology of the Coxeter groups, and in this section we give explicit formulas for
the groups on the E' page of the spectral sequence, and the d' differential, which is given by
a transfer map. We also introduce a pairing for the isotropy spectral sequence of the Davis
complex in Section for use later on in the proof. Following this, Section [2.4] proves
Theorem by computing the E? page of the spectral sequence on a given diagonal, and
feeding these computations into the proof in Section [2.4.11

For the computation of Theorem [2.1.13] in Section [2.5] much more machinery must be
used. In Section [2.5.1] the free resolution for finite Coxeter groups, of De Concini and Salvetti
[18], is introduced. In order to apply the transfer map to computations using this resolution,
a chain map between resolutions is computed in Section Using these tools, the E?
page of the spectral sequence on a given diagonal is computed. Following this, Section
proves that all further differentials to and from this diagonal are zero. The possible extension
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problems arising on the limiting page at this diagonal are treated and discussed in Section
and all of the computations are fed into the proof of Theorem [2.1.13]in Section [2.5.58

2.3. Introduction to the isotropy spectral sequence

During this chapter we use the spectral sequence associated to a group action on an acyclic
CW complex, given by Equation (7.10) in chapter VII of Brown Cohomology of Groups [12].
In this section we follow Brown to introduce this spectral sequence. We start with a short
diversion on extension of scalars and induction.

2.3.1. Induction.

DEFINITION 2.3.2 (see Brown [12], II1.3]). Given a ring homomorphism « : R — S and an
R module M, we construct the tensor product S ® p M where S is considered an R module
via a, i.e. s -7 = sa(r). This construction is called extension of scalars from R to S.

DEFINITION 2.3.3 (see Brown [12] III.5]). Given the ring homomorphism ZH — ZG for
H a subgroup of G, extension of scalars is called induction from H to G. It is denoted as
follows
md$ M = ZG @z M

Since the action of H on G is free, we can decompose Ind% (M) as a sum over left coset
representatives of H in G as follows

Id% M = ZG @z M = P go M.
geG/H

where g ® M is the set {g ® m|m € M}, which is isomorphic to M via the map which
forgets g. There is a canonical map i : M — (ZG ®zy M) via i(m) = 1 ® M and this
maps M isomorphically into the 1 ® M summand of the decomposition. Under the action
of G, g(1® M) = g ® M and so we can write each summand in the decomposition as a
transform of the canonical M sub-module under the G action. We therefore have the following

decomposition [12), II1.5.1]
Ind$ = @ gM.

geG/H
We are interested in the case where N is a G-module whose underlying abelian group has a

decomposition N = & M; over an indexing set I. We require the action of G on N to satisfy
el

that g in G permutes the summands M; in a way dictated by an action of G on I, and we
note that g may also act on the individual summand M; non-trivially.

PROPOSITION 2.3.4 (see Brown [12] II1.5.4]). Suppose N and G are as above. Let G; be
the stabiliser of i in I under the action of G, and let E be a set of orbit representatives. Then

M; is a Gi-module and there is a G-isomorphism N = @IndgiMi.
i€l
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We apply Proposition to the case where X is a G-CW-complex, following Example
I11.5.5(b) in Brown [12]. In this case the G module C,,(X) can be written as a direct sum of
copies of Z. There is one copy of Z, Z,, for each n-cell of X, o, and so

Cu(X)= P Z.
o n—cell of X
We call Z, the orientation module for the cell o. It is the group Z = (—1,1), with the
two generators corresponding to the two orientations of o. The Z, summands of C),(X) are
permuted by G, according to the action of G on the set of n-cells. Let G, be the stabiliser of a
cell o under the G action on the n-cells. Then G, acts on Z, via g acting as 41 if g preserves
the orientation of ¢ and —1 otherwise. Letting O, be the set of orbit representatives for the
action of G on the n-cells, and we apply the proposition to get

Cn(X) = @ Wdf, Z,.
oeOy,
We end this section with the statement of Shapiro’s Lemma:

PROPOSITION 2.3.5 (Shapiro’s Lemma, see Brown [12] 111.6.2]). If H C G is a subgroup
of G and M is an H-module then

H,(H; M) = H,(G;Ind%M).
2.3.6. Spectral sequence of a double complex.

DEFINITION 2.3.7 (see Brown [12, VIL.3]). A double complex is a bi-graded module
(Cp.q)pgez. With a horizontal differential 0" : Cp, — Cp-1),q and a vertical differential
9% 2 Cpq — Cp (1) such that o"9Y = 9v9". Given a double complex, the associated to-
tal complex T'C is the chain complex defined by setting

(TC)n = @ Chq
ptg=n
and setting the differential to be d|¢, , = 0" + (—1)P9".

EXAMPLE 2.3.8. Given two chain complexes C'' and C?, one can define the double complex
Cpq = C’; ® Cg. The associated total complex is then the tensor product of chain complexes
Ct® C2.

DEFINITION 2.3.9 (see Brown [12] III.1]). Let G be a group and F' be a projective reso-
lution of Z over ZG. For a G-module M we define the group homology of G with coefficients
i M to be

H(G; M) = HJ(F & M).

We generalise this by considering a chain complex C = (C)n>0 of G-modules as coeffi-
cients.
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DEFINITION 2.3.10 (see Brown [12 VIL5]). Let G, F' and C as above. Then the group
homology of G with coefficients in C' is given as

H*(G» C) = H*(F ®a C)
where F' ®@¢ C is the total complex of the double complex (Fi ®¢ Cy).

Given a chain complex C' = (Cy)nez and a filtration F,C which is dimension-wise finite,
i.e. {F,(Cn)}pez is a finite filtration of C), for each n, there exists a spectral sequence [12],
VII.2|
E}%q = Hy1(FpC/Fp1C) = Hp14(0).
Combining this with Definition [2.3.7] we associate two spectral sequences to a double complex.
Given a double complex C' = (Cp4)pqez one can filter the total space T'C by F,((TC),) =

@Cin—i. This is finite in the case when C'is a first quadrant double complez, i.e. C, 4 is only
i<p

non-zero for p and ¢ both non-negative integers, and we will deal only with this case. Then
we have a spectral sequence with the following properties:

Ep, = Cpq d’ = +9° E' = Hy)(Cp.) = Hyyy(TO)

where d' is the map induced on E! by 9".
One can also filter the total space T'C' by F,((T'C),) = @ Cr—;,;, and this is also finite

J<p
when C is first quadrant. This gives the spectral sequence with the following properties:
(1) qu = Cpyq d’=£0" E' = Hy(Cyp) = Hpio(TC)

where d' is the map induced on E' by d°. Thus for a double complex there are two spectral
sequences which both converge to the homology of the total complex.

We are interested in the specific case of Definition where the double complex arises
from F' a projective resolution of Z over ZG for a group G and C' a positive chain complex.
The double complex is therefore first quadrant with the form (F, ®g Cy) and the second
spectral sequence in Equation (1) has the form [12] VIIL.5.(5.3)]

(2) Ey, = Hy(F. ®c Cp) = Hy(G;Cp) = Hyrg(F @G C) = Hpsg(G;C)
where the d' is the map induced on E' by the chain differential 9 : C, — Cp_1.

2.3.11. Equivariant homology and the isotropy spectral sequence. We now fol-
low Section 7 in Chapter VII of Brown [12] and apply the previous theory to the study of
equivariant homology.

DEFINITION 2.3.12. For G a group and X a G-complex, we define the equivariant homology
groups of (G, X) to be the homology of G with coefficients in the chain complex C(X) as in
Definition 2.3.10 We denote this:

HY(X; M) := H.(G;C(X, M)).
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In this case Equation gives the following spectral sequence:

By, = Hy(G; Cp(X, M)) = HS\ ,(X; M).

p+q

Consider now the left hand side. We have the following decomposition for Cp(X, M):

Co(X, M) =Cp(X) oM =P Zo o M
oceXy,

where Z, is the orientation module for o, and X, is the set of p-cells in X. Letting M, =
Z, ® M and then applying the results on induction from Section [2.3.1] gives the following
decomposition:

Cp(X, M) = P M, = P d§_M,
oceXp c€0p

where O, is a set of coset representatives for X, with respect to the G-action.
We may now apply Shapiro’s Lemma (Proposition [2.3.5)) to the E' term of the spectral
sequence:

Bl, = H(GiC(X.M)) = H,(G: @) wdd, M)
o€0p

= EB Hq(GU§Ma)

c€0yp

so the spectral sequence has the form:

E), = P Hy(Go; M,) = HY

prq(X5 M).
ce0p

We finish with the observation from Brown that should X be acyclic, we have
HY(X; M) = Ho(G; M),
which gives the spectral sequence the form

(3) E), = @ Hy(Go: My) = Hyyo(G; M).
o0e0y

We let this spectral sequence be called the isotropy spectral sequence.
We now discuss the d' differential for the isotropy spectral sequence, following Brown [12]
VIL.8]. Consider the following diagram:
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dt El

1
Ep,q p—1,q

H,(G;Cp(X,M)) H,(G;Cp1(X, M))

LN LN

D Hy(Go; M,) D Hy(Go; My).

oe0p 0€0p_1

Hq(G;a)

Here the central map from left to right is given by the fact that in Equation the differential
on the E' page is induced by the chain complex differential d : C\,(X, M) — Cp_1(X, M). We
will define a map ¢ on the bottom row such that under the vertical isomorphism, the map ¢
gives the d! differential (see Brown [12] VIL8.1]). We define ¢ in three stages

(1)

Consider a p-cell o and a (p — 1)-cell 7 of X. Denote by d,, the component of
the differential 0 : Cp,(X, M) — Cp—1(X, M) restricted to o in the source and 7 in
the image. Recall that C,(X, M) is a sum of modules M, for every p-cell & and
80 Opr + My — M. Let F, = {7 | 05 # 0}. This corresponds to (p — 1) cells
in the boundary of the p-cell . Then since G, is the stabilizer of o, the set F, is
Gy-invariant. Let G, = G, N G,. Then when 7 is in F, the index of G, in G, is
finite. We can therefore define a transfer map

tor : Hy(Go; My) = Hy(Gor; M,).

Since d is G-equivariant, it follows that 0, : M, — M, is G,r-equivariant. Together
with the inclusion G, < G this induces a map

Ugr : Hy(Gor; My) — Hy(Gr; M;).

Under the isomorphism from the central to the bottom row of the diagram, we
are taking a sum over orbit representatives. It may be that H,(Gr; M;) is not a
summand on the E' page, if 7 is not a chosen orbit representative. Let 7y be the
orbit representative for the G-orbit of 7 (in Op_1), and choose g(7) in G such that
g(7)T = 710. Then there is an isomorphism M, — M, given by the action of g(7)
on Cp_1(X, M) and this is compatible with the conjugation isomorphism G, — G,
given by conjugating by ¢(7). Together these give an isomorphism

vyt Hy(G; M) — Hy(Grys Myy).

DEFINITION 2.3.13. Given the maps described above, the d' differential of the isotropy
spectral sequence is

¢: P Hy(Goi My) » @ Hy(Go; My)

oe0yp 0€0p-1
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when on each summand of the left hand side we define ¢ to be

¢ qu(GU;MU): Z Vrlorlor
TEFL

where F/ is the set of representative for the orbits of the cells in F,/G,-.

2.3.14. Isotropy spectral sequence for the Davis Complex. We now apply the
isotropy spectral sequence in the case that the group is a Coxeter group W with generating
set S, the coefficient module is the integers Z and the W-CW-complex is the Davis complex
Sw (introduced in Section [1.3)).

Recall that the Davis complex is contractible (Proposition and hence acyclic. Then
Equation becomes

E),= P Hy(Wo:Zo) = Hyyo(W;Z),
€0y
since Zy @ 7. = L.

Recall that each p-cell of Xy is represented by a spherical coset wWe where T has size p,
and the vertices of the cell are given by the set {wWp|lw € wWr}. W acts by left multiplication
and so we can choose the orbit representatives of p-cells to be the cosets eWr where T has
size p. Recall that S is the set {T" C S | Wy is finite}. Hence the set of orbit representatives
O, is given by spherical subgroups Wz with 7" in S having size p. The stabiliser of a cell
represented by a spherical subgroup Wr under the W-action is Wrp itself, since the action of
W is given by left multiplication. Every member of the generating set T' of W acts on the
cell by reflection and therefore reverses the orientation of the cell. The action of an element
of Wr on the orientation module will therefore be the identity if the element has even length,
or negation if the element has odd length. Under these choices, the isotropy spectral sequence
becomes

E),= P Hy(Wr;Zr) = Hyo(W;Z)

TeS
|T|=p

where we write Zr as the orientation module for the cell corresponding to Wr. Putting this
together we get E' page as shown in Figure
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1 1 1
3| Hz(Wy: Zy) P © H3(Wy; Zy) &L oa Hs(Wr; Zr) L oe H3(Wrp; Zr)
tes Tes TES
IT|=2 IT|=3

1 1 1
ol Ho(WyiZg) & @ Ho(WiZ) <& & Ho(WriZp) <& & Hy(WriZr)
tesS TeS TeS
|T|=2 |T|=3

1 1 1
1| H\(WpZy) <& o Hi(WiZ) & o H(WrZr) <& @ H(WrZr)
tes TeS TeS

T|=2 T|=3

1 1 1

0| HoWy;Zy) & @ H(WuZ)) <& & HWrZr) & & Hy(WriZp)
tes TeS TeS

|T|=2 |T|=3

FIGURE 1. The E' page of the isotropy spectral sequence for the Davis complex

Here the zeroth column only has one summand, since only the empty set satisfies the criteria
of generating a spherical subgroup and having size zero. In the first column, we note that all
generators in S generate a cyclic group of order two, which is finite and so we sum over all ¢
in S. The horizontal d' maps are defined by applying the definition of the d' differential for
the isotropy spectral sequence (Definition in the specific case for the Davis complex
Sw-

PROPOSITION 2.3.15. In the isotropy spectral sequence for the Davis complex ¥y, denote
the d* differential component restricted to the Hy(Wr; Zr) component in the source and the
H,(Wy;Zy) in the target by d%’,U' Then this map is non zero only when U C T and is given
by the following transfer map:

dpy: H{(Wr;Zp) —  Hy(Wy; Zy).

On the chain level we compute Hy(Wr;Zr) by computing homology of Zr @w, Fw, for Fy,
a projective resolution of Zi over ZWr. To define the transfer map we compute Hy(Wir; Zyr)
by computing homology of Zy @w,, Fw,. for Fw, again a projective resolution of Z over ZWr.
The transfer map can then be defined on the chain level by the map below, where m ® x is in
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Zr ® Fyw, and Wy\Wr is a set of orbit representatives for Wy in Wr.

d%ij:m®x > Z m-gl®g- .
geEWy\Wr

PRrOOF. Consider the three maps of Definition Recall that an orbit representative
for a p-cell is given by eWr with T'in S and |T'| = p. The set Fr = {U | 07,y # 0} is then given
by cosets wWy with |U| = (p—1) such that wWy C Wy, which is satisfied if and only if U C T'
and w € W by Lemma Since Wy is the stabiliser of the cell eWr, this gives that the
orbit set ({U | Orpy # 0}/Wr) is given by {U | [U| = p—1, U C T'}. Since these are already in
the set of orbit representatives of (p — 1)-cells we have F. = {U | |U| =p—1, U C T} and so
the map ¢ restricted to the Hy(Wr; Z7) summand maps only to summands H,(Wyr; Zyr) when
U C T. In other words, this gives that the isomorphism v, in the definition of ¢ is the identity
map in this case, since the map v, maps between (p — 1)-cells and their orbit representatives
and in this case the (p — 1)-cells we consider are already the orbit representatives. The
intersection Stab(Wr)N Stab(Wy) = WrNWy = Wy and the action of Wi on Zr is precisely
the action of Wiy on Zy. Therefore the map u,, in the definition of ¢ is also an isomorphism
and it follows that

d) qu(Gg,Ma) = Z Vrligrlor
TEF)

¢ Tl (Wrizy) = Z tru
UeF;

where t7 17 is the transfer map

tT,U : Hq(WT; ZT) — Hq(WU;ZU).
Note that cycles in Hy(Wr;Zr) are represented by chains in Zp ® Fyy, where Fyy, is a
projective resolution of Z over Zyy,. Letting m ® z be an element on the chain level yields
the formula, where the transfer map on the chain level is computed via Brown [12] I11.9]. O

Since we are interested in Hy(W;Z) and H3(W;Z) we wish to consider the groups on the
red diagonal of Figure [I| at E> for Hs and the blue diagonal of Figure [1] for Hz. We are
summing over finite Coxeter groups with generating set a certain size, and the classification
of finite Coxeter groups from Theorem [1.1.12| provides a finite selection of possible groups for
each size of generating set. Therefore there is a finite number of calculations to do in order
to find an E! term in general.

LEMMA 2.3.16. Let V — W be an inclusion of Coxeter groups satisfying that V is parabolic
i.e. that the generating set for V', Sy, is a subset of the generating set for W, .S and Dy is a
full subdiagram of Dyy. Then there is a map of isotropy spectral sequences

E(V)— E(W)
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which is an inclusion on the E' page.

PRrOOF. The inclusion j : V' — W induces an inclusion Wy Sy, € WS, since Sy is a
subset of S and therefore Sy is a subset of S. This induces a map between the realisations
i: Xy — Yy, and therefore a map between the chains on p-cells C,(Xy,Z) LN Co(2w,Z).
We therefore have the following diagram:

Ely(V) Epy(W)

Hq(V§ CP(ZVaZ)) Hq(W§ CP(EW,Z))

% :

DBuves, Hy(Wy; Zy) > @D res Hy(Wr; Zr)
|U|=p |T|=p

where the dotted map is induced by the map on p-cells on the central row. Every spherical

Hg(jsix)

subgroup of V will also be a spherical subgroup of W, since it is a full inclusion, and this will
correspond to a map between the p-cells representing these spherical subgroups. We therefore
have

E, (V) < E, (W)

@ Hq(WU;ZU) — @ Hq(WT;ZT).

UeSy TeS

|U|=p IT|=p
Since the d' differential is defined via the transfer map on each summand, all d' differentials
in E(V) will map under the inclusion to the same differential in E(W'). The inclusion on the
E' page therefore induces a map of spectral sequences on further pages. This completes the
proof. O

2.3.17. Pairings on the isotropy spectral sequence. We now consider a pairing of
spectral sequences, for use in Section [2.5.34] We follow May’s A Primer on Spectral Sequences
[37] and recall Section 4 on products. For filtered complexes A, B and C, if a pairing

AR B —C

is a morphism of filtered complexes, i.e. if F},A- F,B C F,,C, then this induces a morphism
of spectral sequences

E"(A® B) — E"(C).

Combining this with the Kiinneth map E"(A) ® E"(B) — E"(A ® B) (which is induced by
the Kiinneth map on homology on the E' page) defines a pairing

¢p:E"(A)®@E"(B)— E"(C)
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which satisfies a Leibniz formula for differentials, i.e. for x in E"(A) and y in E"(B) the
pairing satisfies

dg(¢(z @ y)) = d(di(2) @ y) + (~1)*g(z © di(y)).

Consider the product of two finite Coxeter groups Wy and Wy, Then Wy x Wy = Wy
for X = U UV as in Section [1.2] For the following notation let W; be the Coxeter group
corresponding to I € {V,U, X}. Let St be the generating set of W and let S; be S for the
Coxeter system (W7, I) (see Definition . Let X7 be the Davis complex Xy, and F! be
a projective resolution of Z over ZW;. Let E(I) denote the isotropy spectral sequence for Wi.
Then E(I) is the spectral sequence related to the double complex F! ® C(X1,7). Denote the
double complex by I, ; and the associated total complex T'I. Then (TI), = & I, and for

p+g=n
the spectral sequence E([I) the total space T'I is given the filtration F,((T'1),) = @ In—i;-
1<p
LEMMA 2.3.18. The product map Wy x Wy — Wx defines a map on chain complexes

Proor. With notation as above, the product map induces a map of posets

WUSUXW\/SV — WXSX
(UWTU,'UWTV) — U'U(WTUI_lTV)-

This in turn induces a map on their realisations
EU X EV — X X,

which is the map that gives the decomposition X x = ¥ x Xy from Lemma[1.3.13] Consider
Ci(X1,7) and note that p-cells of ¥ are represented by cosets wWr where T' € S;. Given an
i-cell of Xy represented by uWr, and a j-cell of ¥y represented by vWp, we use the above

poset map and define an (i + j)-cell of ¥ x represented by uvWry . This gives a pairing
CZ‘(EU,Z)Q@C]‘(Z‘/,Z) — CH]-(ZX,Z). O

THEOREM 2.3.19. With the above notation, we can apply the hypothesis of May [37,
Section 4] (that we have a morphism of filtered complexes) and conclude that there is a pairing

®:E"(U)® E' (V) = E"(X)

under which the differentials satisfy a Leibniz formula. Under the decomposition on the E*
page of the spectral sequence (Figure

Ep (1) = Hy(Ff @w, Cp(S1,2)) = €D Hy(Wr; Zy)
I:ES[
]=p
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this pairing induces a pairing ®., which is given by the Kinneth map when restricted to
ndividual summands

. - Hy(Wg; Zg) © Hy Wy Zy) = Hyrg Wy x Wi Zg © Zy) = Horg (W Zg)

and it follows that the differentials in the isotropy spectral sequence for the Davis complex
satisfy a Leibniz formula with respect to the pairing ®..

Proor. To show that ® is a pairing we must show that the map
TURTV - TX

is a morphism of filtered complexes. We have on the nth-chain level that

F,((T1)n) = @In—i,i = @Fé,z ® Ci(X1,7)

1<p 1<p

for I in {U,V, X }. Since Wy and Wy, are subgroups of Wx such that Wiy x Wy = Wy, there
is a pairing from FY ® F}Y — Fk)i-l (for example by taking FX = FU @ FV by Brown [12,
V.1.1]). Putting this together with the pairing C;(Xy,Z) ® Cj(Xv,Z) — Cij(Xx,Z) from
the previous lemma gives

Fy(TU) - Fy(TV) C Fppq(TX)

as required in [37]. We now consider this pairing under the decomposition on the E! page of
the isotropy spectral sequence for a Coxeter group Wy, shown in Figure

E) (I) = Hy(F] @w, Co(S1,Z)) = @D Hy(Wr; Zz)
I:ES[
l|=p
and described in Section Under this decomposition the map from a single summand
on the right of the isomorphism, to the left of the isomorphism, is given by the following map
L%, induced by ¢:

L

FI @w, C,(Sr, Z7) FY ow C,(Zw, Z)

HQ(F? QW CP(ET’ZT)) L> H(I(F*VV Qw CP(EW7Z))

H,(Wr; Zr) H,(FY @w Cp(Sw, 7).

If a Coxeter group Wx arises as a product Wx = Wy x Wy, then the pairing @, along with
the decomposition for each group Wy, Wy, and Wx gives the following diagram
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P

1 1 1
(E,,(U) & Ep’,q’ (V) E(p+p’)7(q+Q’) (X)

)
(Hq(F*U SOwy Cp(ZU»Z)) X Hq/(Fy QW Cp/(ZVaZ))) - q+q/(F§ Owx Cerp’(ZXaZ))

Dy | = Dy | = Doy | =
o,
( D H Wy Zg) ® D Hy(Wy:Zy)) = @ Hypg(WxiZy).
U7€SU ‘{ESV XESX
|U|=p |V|=p' | X |=p+p’

The map . is then induced by ® and the two vertical isomorphisms. The isomorphisms are
induced by the component-wise inclusions given by ¢, on each summand. Since the pairing ®
is defined by the pairings F/ ® FY — F, and Ci(3y,Z) ® Cj(Sy, Z) — Ciyj(Sx, Z), then
component wise, the map @, is given on each summand of

@D H,Wg;Z5) and @ Hy(Wy; Ziy) by the composite

QESU V:GSV
|Ul=p |V]=p'

H,(Wg;Zg) @ Hy (Wir; Zyp) = Hyy g (Wi x Wi Zg @ Zgr) — Hyrg (W3 Zs)

where here X is defined such that Wy x Wy = Wg. Here the first map is given by the
homology cross product (see [12, V.3|), and the second map is given by the fact that if
Wg x Wy = Wx then the orientation modules satisfy Zg ® Zy, = Zg. This map is precisely
the Kiinneth map on homology. Extending this component wise definition to a definition on
the tensor product of the summations, gives the map ®, that lifts to the map ® on the top
rOW.

This pairing on the decomposition at the E' page of the isotropy spectral sequence for
the Davis complex will therefore induce a pairing on the E” page and it follows that the
differentials in the isotropy spectral sequence for the Davis complex satisfy a Leibniz property
with respect to the pairing .. O

2.4. Calculation for Hy(W;Z)
From Section [2.3.14] we have a spectral sequence with E' page the following
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1 1 1
3| Hs(Wyzy) <& @ Hs(WiZy) <& © Hs(WpZp) < @ Hs(WriZp)
tesS TeS TeS
|T=2 |T|=3
d! d! d!
2 Ho(Wy;Zg) <«— @ Ho(Wy;Zy) <— @& Ho(WrpiZr) <— & Ho(Wr;Zr)
tesS TeS TeS
IT|=2 IT|=3

1 1 1
1| H\(WpZy) <& o Hi(WiZ) & o H(WrZr) <& @ H(WrZr)

tesS TeS TeS
T|=2 T|=3
dt d! dt
0 Ho(W@;Z@) — D Ho(Wt;Zt) — @D H()(VVT;ZT) — @D H()(VVT;ZT)
tesS TeS TeS
|T|=2 IT|=3
0 1 2 3 4

and the E* page will give us filtration quotients of Ho(W;Z) on the red diagonal. In this
section we compute the red diagonal on the E? page and note that no further differentials
map from non zero groups onto this diagonal. The E? computation therefore gives us the
limiting groups on the red diagonal and the result follows.

2.4.1. Homology at Ej,. The Ej, term is given by Ho(Wy; Zg). From Definition
Wy is the Coxeter group with no generators, i.e. the trivial group, and so H.(Wy;Zy) is zero
for x > 0. Hence E&Q is zero, and so EaZ and Eg5 are zero.

2.4.2. Homology at Eil. The Eil term is given by
Eiy = @ Hi(Wy; Zy).
tesS

Each individual summand Hj(Wy;Z;) is the homology of the group Wy, i.e. the Coxeter group
with single generator ¢ and relation t> = ¢ (i.e. the finite Coxeter group W(A;)). Hence we are
considering the homology of a cyclic group of order 2, with coefficients in a Z; module given
by the integers with action where the non-trivial group element ¢ acts on Z; by negation.

LEMMA 2.4.3. With notation as above,
Hl(Wt; Zt) =0.

Proor. This follows from taking the standard projective resolution for a cyclic group of
order 2, tensoring with the coefficient module and calculating homology. It also follows from
the resolution introduced later in Section and in particular Example [2.5.6] O
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Since F{, is a sum of groups which are all zero, we conclude that Ei; = @& Hy(W;Z:)
) ’ tesS
is zero, and hence Eil and ET9 are zero.

2.4.4. Homology at E21’0. We finally consider the homology at Eio, which is given by

Elo= & Ho(Wr;Zr).

20 =& Ho(Wr;Zr)

IT|=2

Since the other groups on the red diagonal in the spectral sequence are zero, this will be the

only contributing group to the red diagonal on the E*° page. We start by computing E%O,
which is given by the homology of the following sequence

D H()(Wt; Zt) ~ D H()(WT; ZT) - D HQ(WT;ZT).
tes & TeS d TeS
|T|=2 IT|=3
Recall that the d' differential is given by the transfer map defined in Proposition [2.3.15], where
the transfer map restricted to the summand corresponding to a spherical subgroup W maps

into summands corresponding to the spherical subgroup Wy, only when U is a subset of T,
and this map is given on the chain level by:

d%“,U t Hy(Wri Zr) — H(Wu; Zuy)
mer Z m-g_1®g-1‘.
gEWUu\Wr
LEMMA 2.4.5. For all T in S, such that |T| > 0,
Ho(Wrs Zy) = Zo.

Proor. This follows from the definition of group homology with coefficients in a module,
see [12] II1.1.(1.5)]. The zeroth homology is given by the coinvariants of the module under
the group action:

Ho(G; M) = Mg
= Z®za M.

Since in our case the module is the integers and each group generator acts as multiplication
by —1 we compute homology to be the group Zo,. O

LEMMA 2.4.6. Applying the definition of the transfer map for the bottom (Ho(Wr;Zr))
row of the spectral sequence, and letting the generator of Ho(Wrp;Zr) = Z2 be denoted by 1r
gives the following map, when T' is a subset of T.

dpp s Ho(Wr; Zy) —  Ho(Wp; Zp)
ZQ — ZQ

TN 0 if |Wrl|/|Wr| is even
T Iy if [Wrl/|Wr] is odd.
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PRrROOF. From Brown [12] II1.9.(B)] we know for H a subgroup of G, the transfer map
acts on coinvariants as

tr: MG — MH
mo— Z gm
geH\G

where m and m denote the image of m in Mg, or My. In our case this gives
dpp: HiWr; Zr) —  Ho(Wyv; Zgv)
ZQ — ZQ

17 — Z 1

gEWT/\WT
since g - 1 = £1 is in the class of 1 in Zz//Wps. Noting that we are mapping into a Zy and
the number of entries in the sum is |Wr|/|Wy/| completes the proof. O

For X € S, let 1x be the generator for the summand Hy(Wx,Zx) in @SHO(WT; Zr).
Te

LEMMA 2.4.7. With notation as above, when T' has size 1 and T = {s,t} has size 2 the
transfer map d* restricted to the T summand is given by

dl [ (1 ) _ 18 + 1t me<87t) odd
Ho(WriZr) \T) =3 if m(s,t) even.

PrOOF. Note that [W,| is 2 for all x € S and since W, is a dihedral group, [Wy, 4|
is 2 x m(s,t). Then |Wg,n|/IWe| = m(s,t) for x € {s,t}, and we apply Lemma to
compute the differential. O

DEFINITION 2.4.8. We say that a Coxeter group with generating set T' = {s,t,u} is of
type X if the Coxeter diagram has the form:

p odd

—o °
S t U

iLe. if Wp = W(I2(p)) x W(A;) and p is odd.

LEMMA 2.4.9. If T" has size 2 and T = {s,t,u} has size 3 the transfer map d* restricted
to the T' summand is given by

1
A" | Ho(WriZr) (1r otherwise.

- { Loy + Ly if Wr is of type X
0

PROOF. When T = {s,t,u} and Wr is finite, there are a finite number of Coxeter diagrams
that may represent Wy, given by groups and products of groups in the classification of finite
Coxeter groups (Theorem [1.1.12)). The order of these groups and their size two subgroups is
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documented in the table below, where we recall that W (A1) x W (A1) x W(A1) = W(I2(2)) x
W (A1) and so this group is included in the final case.

Wr Dy Wrl | Wil | Wisal | Wit
s+ u
W(Ds) oo o 48 8 4 6
s ¢+ u
s ¢+ u
W(I2(p)) x W (A1) giz . 4p 2p 4 4

Calculating |Wr|/|Wr| in each of these cases therefore gives an even answer (and hence a
zero transfer map) unless we are in the final case W (Ia2(p)) x W(A;) and p is odd. In this
case the maps to the subgroups generated by {s,u} and {¢,u} are non-zero. O

We now consider the homology at E2170, using our calculations of the transfer maps.

PROPOSITION 2.4.10. The homology at Ej -

© Hy(Wi; Zy) <—— © Ho(WriZr) <—— & Ho(Wr;Zr).
teS dt TeS d TesS
IT|=2 IT|=3
s given by

HO(D00§ ZQ) ©® ZZ [E(Deven)] ©® Hl (Dodd; ZQ)

where the diagrams are as defined in Definition and are viewed as 1-dimensional com-
plexes.

ProOF. Considering the calculations of the transfer maps in Lemmas [2.4.7] and [2.4.9] a
splitting is observed. This is outlined in the diagram below.
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dl

b HO(WT;ZT) ©® HO(WTQZT)
TeS TeS

|T|=3 |T|=2

o,

® Ho(Wrp;Zr)

& Ho(Wy; Zy)
teS

® Ho(Wr;Zr)

Wr type X T={s,t}
m(s,t)=2
S
®  Ho(Wr;Zr)
T={s,t}
m(s,t)#2 even
@
dl
©  Ho(Wr;Zr) & Ho(Wr;Zr)
T={s,t} teS

m(s,t) odd

and calculating the homology of the top row in turn gives a splitting

coker (@ Ho(Wr,Zr) & o Ho(Wrs Zr))
Wr type X T={s,t}
m(s,t)=2

D

@ Ho(Wr; Zr)

T={s,t}
m(s,t)#2 even
D
dt
ker ( D Ho(WT; ZT) — D Ho(WT; ZT)> .
T={s,t} teS

m(s,t) odd

50

We now define an isomorphism € = €1 @ €3 @ €3 from these three groups, to the three groups

in the statement of the proposition:

HO(DOQ§ ZQ) b ZZ[E(Deven)] G Hy (Dodd§ ZQ)

We do this here in heavy detail, as this splitting technique is used regularly within the results
of this chapter. For Zs[E(Deyen)], let {s,t} be the basis element corresponding to the edge
between s and ¢, and note that edges only exist if m(s,t) is even and greater than 2. Recall
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that we denote the generator for Hy(Wp;Zr) = Zy by 1p. Then es is defined by

€2 S¥) HO(WT;ZT) — ZQ[E(Deven)]
T={s,t}
m(s,t)#2,even

1{s,t} — {S,t}
and we note here that €3 is an isomorphism on inspection.

For Hi(Dyqq; Z2), note that when viewed as a simplicial complex, D,4q has no 2-cells,
s0 H1(Dogq; Z2) = ker(d : C1 — Cp) for the simplicial differential d. Here C; is generated
by edges {s,t} between vertices s and t where m(s,t) is odd, i.e. C1 = Za[E(Dyqq)] and Cy
is generated by the vertices of D,4q, given by the generating set S of W, i.e. Cy = Zo[S].
Moreover d({s,t}) = s + t. Recall from Lemma that the transfer map is given on
summands Ho(W,4y; Zr) by dl(l{syt}) = 15+ 1; if m(s,t) is odd. Therefore we can define a
chain map:

©  Ho(Wr;Zr) —  Z2[E(Doga)]
T={s,t}
m(s,t) odd
1{5’15} — {S,t}

and this map induces an isomorphism between homologies, €3:

dl
e;;:ker( ® HO(WT;ZT)%téGSHo(WT;ZT)) —  H1(Doqq; Zo2)

T={s,t}
m(s,t)odd
1
ker( & Ho(WrZr) % @HO(WT;ZT)) 5 ker(d : Zo[E(Doaa)] — Zo|S)).
T={s,t} teS
m(s,t)odd

The map between the first groups is as follows:

1
elzcoker( o HWrZr) % o HO(WT;ZT)> 5 Ho(Dee: Zo)
Wr type X T={s,t}
m(s,t)=2

Ly = [{s:th],
where [{s,t}] is the generator for the summand of Hy(Des; Z2) corresponding to the connected
component containing {s,t} (i.e. the component whose vertices are labelled by {s’,t'} with
{s',t'} equivalent under the relation ~ to {s,t}).

Recall from Lemma W that the transfer map is given on summands Ho(Wg;uy; Zr)
by dl(l{s,t’u}) = lysuy + 1gguy if Wr is of type X. Therefore generators of Hy for triples of
type X get mapped to sums of generators of Hy corresponding to commuting pairs (elements
of See) which are equivalent to each other under ~, i.e. they are in the same component of
Dee. Therefore the map € is well defined and moreover it is an isomorphism. This concludes
the proof. O
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2.4.11. Proof of Theorem [Al

THEOREM 2.4.12. Given a finite rank Cozxeter group W with diagram Dyy, recall from
Definition [2.1.]] the definition of the diagrams Dee, Dodd and Deyen. Then there is a natural
isomorphism

Hy(W;Z) = Ho(Dee; Z2) ® Zo|E(Deyen)] ® H1(Dodd; Z2)

where in the first and final term of the right-hand-side the diagrams are considered as simplicial
complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the
diagram).

PRrOOF. The red diagonal of the isotropy spectral sequence in Figure [1] gives filtration
quotients of Hay(W;Z) on the E* page. The E? page is as follows:

3 ?
2 0 ?
1 0 0 ?

0 ? ? HO(DOO; ZQ) ©® ZQ [E(De/ue’n,ﬂ ©® Hl(Dodd; ZQ)

Here all differentials d” for » > 2 with source or target the F( position either originate at,
or map to a zero group. Therefore the red diagonal on the limiting £ page is given by the
diagonal on the E? page. Since there is only one non zero group on the diagonal, there are
no extension problems and this group gives Ho(W;Z) as required. O

2.5. Calculation for H3(W;Z)

The isotropy spectral sequence for the Coxeter group W has E' page the following
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1 1 1
3| Hs(Wyzy) <& @ Hs(WiZy) <& © Hs(WpZp) < @ Hs(WriZp)
tesS TeS TeS
IT|=2 IT1=3
1 1
2| Ha(WyiZg) & o H(WiZ) & o H(WriZr) & o Hy(WriZp)
tes TeS TeS
IT|=2 IT|=3

1 1
1| HiWgZy) & o BiWsz) & o BWeZe) & o H(WrZr)

tes TeS TeS
T|=2 T|=3
dt dt dt
0 Ho(W@;Z@) — @Ho(Wt;Zt) — &P H()(VVT;ZT) — &P H()(V[j Zj)
tes TeS TeS
|T|=2 IT|=3
0 1 2 3 4

and the E* page gives us H3(W;Z) (up to extension) on the blue diagonal.

2.5.1. Free resolution for Coxeter groups. In this section we follow the paper Co-
homology of Cozxeter and Artin groups by De Concini and Salvetti [18]. They describe a free
resolution of Z over ZW for a finite Coxeter group W with generating set S. We will use this
throughout this section to calculate the low dimensional homologies of finite Coxeter groups
that appear as summands in the entries of the spectral sequence.

The free resolution is denoted (Cy,d,) and defined as follows: Cy is a free ZW module
with basis elements e(I") for I" a flag of subsets of S with cardinality k, that is " in Sy, where:

Sp={l=@1D>T2>-)|T1CS |y =k}
i>1

The differential is defined using minimal left coset representatives of parabolic subgroups. For
7in Iy, let WF M} be the set of minimal left coset representatives of Wr,\ (-} in Wr,. Then
0 : Cp — Cr_q is ZW linear and defined as follows

(4) eM)y= > Y > (=1)* @78 ()

1>1 Tel'; {7}
05|01 FEMT
BT i1 BCT\{7}

where the flag IV in Cy_1 is given by

I'=T1 2> D1 DO\{r}) DB Tiy1B DB MisaBD )
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and the exponent (T, 7,7, ) is given by a formula in terms of I',i,7 and 5 which we define
below. This is well defined from Lemmal[I.2.6] We choose an ordering for the set of generators
S and let o(B3,T'x) be the number of inversions, with respect to this ordering, in the map
Iy — B71TwB. We let u(T';, 7) be the number of generators in I'; which are less than or equal
to 7 in the ordering on S. Given this, the exponent is described by the following formula:

1—1 d
k=1 k=i+1

During this proof we adopt the convention that the generators are always ordered alphabet-
ically (e.g. s < t < u). We also denote the generator corresponding to a flag of length d,
(' DT D --- D Ty) by I'r;5ry5..51,, Where we omit the set notation for each I';. For
example Iy, I's5,, or 'y 155 (which corresponds to I' = {s,t} D {s}).

LEMMA 2.5.2. In all computations of the differential 6, for 0 < p <4,

d

> o(B.Ty) = 0.

k=i+1

PRrROOF. The differential 6, : C;, = Cp—1 is nonzero when for some i > 0 we have |I';| >
ITi+1], and the sum

d

> o(B,Ty)

k=i+1

is over k where k starts at ¢ + 1 and ends at d, for the flag I'r,51,5..or,. Therefore there
are no terms in this sum unless I';;1 is non-empty. Let s,t,u be in the generating set S.
Generators in Cy have the form I'p, in C have the form I'y, and in Cy have the form 'y~
or I's;. Therefore none of these generators satisfy |I';| > |T'i+1] for I'; 41 non-empty. The only
generators in C'5 and C4 which satisfy the property are I'gs;os in Cg or I'gi5s5s and I'gyos in
Cy. For all of these generators, the property is satisfied for I';;1 a singleton. Since o(3,T)
calculates the number of inversions in the map I'y, — S~y from this singleton to another
set, the number of inversions will be zero since an inversion can only take place when there
are two or more elements in the source set. This completes the proof. 0

We therefore omit the o(3, ') term from our calculations in this chapter, as we only ever
calculate differentials ¢, for 0 < p < 4.

ExaMpPLE 2.5.3. We give an example of the resolution for finite Coxeter groups with one
generator S = {s}, from C5 to Cp.
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Cs & G—2 o gy
Generators:
Is550s Fsos I Ty
Differentials: s ——— (s — 1)y

The differential from I's to I'y is given by the following formula, noting that coset representa-
tives of Wy in Wy are e and s. We recall the formula for d;(e(I')) from Equation (4).

0l = D> > (~)Eetefpry

i=1 s pPB=e,s
= Z(,l)a(l“s,l,s,ﬁ)ﬁpw
B=e,s
= (=1)tely+ (—1)%sTy
= (s— DIy

where we compute

0

ol Lsie) = 16(e) + 3 [Tul+ uls.s)
k=1
= 04041

=1

a(ls,1,8,8) = 14(s) + Z U] + (s, s)
k=1
= 140+1
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Similarly the differential d5 : Cy — C1 is given by

02(Dans) = DY > (~1)T=e2o0)ar,

i=2 s B=e,s

— Z (—1)(Ts2:2:5.8) g7
B=e,s

= (—1)%Ts + (—1)%sT

= (1+s)T%

where we compute

1

OC(F538727376> = 26(6) +Z’Fk’ +:u(378)
k=1
= 0+1+1

= 2

1

a(Tsos,2,5,5) = 20(s)+ > [Tl + (s, s)
k=1
= 241+1

= 4

Finally, the differential 3 : C5 — C5 is given by

53(FSDSDS) = ZZ Z (_1)a(FSDSDS737S’B)BFst

i=3 s fB=es
_ 3 s,
B=c.s
= (—1)%eDos + (—1)%sDos
= (s—1)sos

where we compute

2

a(FstDS7 3a S, 6) = 36(6) + Z ‘Fk’ + ,U,(S, 8)
k=1
= 04+2+1

= 3
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2

a(FSDsDSa 35 S, 8) = 35(8) + Z ’Fk| + M(S’ 5)
k=1
= 3+2+4+1

= 6.
DEFINITION 2.5.4. Define p(s,t;j) to be the alternating product of s and ¢ of length j,
ending in an s (as opposed to (s, t;j) which is the alternating product starting in an s) i.e.
length j
p(s,t;j) =...sts
ExXAMPLE 2.5.5. We give an example of the resolution for finite Coxeter groups with two

generators S = {s,t}, from C3 to Cy and with m(s,t) finite. Here, the resolution is given
on a landscape page for ease of reading, and the calculations of the differentials are given in

Appendix [B]
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61

Cs Cy 4 Co
Generators:
[s560s Lo I F@
oot 1Y Iy
Lstos | R
Lot
Differentials: Dt (s—1Iy
Ty (t — )Ty
P (L4 s)Ls
| PET (1+t)Iy
m(s,t)—1 m(s,t)—1
Pue S (s T+ Y (1) p(t, s g)T
§=0 g=0
L5608 ! (s = Dlsos
Fiseot ! (t = 1)
. (I —p(t,s;m(s,t) —1))Tsos — (1 4+ 5)Ts if m(s,t) even
’ Dsos — p(s,t;m(s,t) — D)5y — (1 + s)Igy  if m(s,t) odd
Ty (=14 p(s,t;m(s,t) —1))Teoe — (L + )Ty if m(s,t) even

T~ + p(t, ssm(s,t) — 1)lsos — (1 +8)Tse  if m(s,t) odd

(Z:M)EH 9Od NOLILVTINDTVD 'S¢

8¢
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The entries in the spectral sequence which we wish to compute are in fact homologies
of finite Coxeter groups with twisted coefficients Zr given a generating set 7', in which the
action of the generators on Zr is given by negation. To calculate the twisted homologies we
tensor the resolution with Z under the group action. We show this in the case of our two
examples.

ExXaMPLE 2.5.6. We give an example of the tensored resolution for finite Coxeter groups
with one generator S = {s}, from C3 to Cy. We consider the resolution of Example and
upon tensoring with Z under the group action, group elements act as negation if they have
odd length and the identity if they have even length. This gives the following resolution:

1
Z ® Cs Z ® Cy & Z® Cy Z ® Co
Ws Ws W W
Generators:
1®1—‘33st 1®sts 1®Fs 1®F@
Differentials: 19Ty b— 1® ((s = 1)Iy)

= —2(1®Ty)

3 R 1:63((1 +5)Ts)
1 ® ((3 - 1)sts)

1T —
® $D8Ds — _2(1 ® PSDS)

ExaMPLE 2.5.7. We give an example of the tensored resolution for finite Coxeter groups
with two generators T' = {s,t}, from C3 to Cy and with m(s,t) finite. We consider the
resolution of Example and upon tensoring with Z under the group action, this gives the
following resolution:



é
7 ® C - Z ® Cy
WT WT
1ol 1®Ty
1®Ty
1@t —2(1®Ty)
1Ty —2(1®Ty)
0
0

Z® Cs & Z & Cy &
Wr Wr
Generators:
1®Tsosos 1®Tsos
1 ® Di5oe 1@
1® s tos 1® Ly
1® st
Differentials:
1®Tsost
1@ Tt
1®@Tgyt

1® (S - 1)F533
- —2(1 ® FSDS)

1 & FstDs }

1® (t—1)~y
== —2(1 ® FtDt)

1 @5t

2(1 @ Tss) if m(s,t) even

1T —
® Latos 1®Tsns — 1@y if m(s,t) odd

—2(1®@Te) if m(s,t) even

1T
X stot -1® Ft:)t +1® sts if m(s, t) odd

1@ (D7) (~ 1)t (s, )T
+ O 1)9t2p(t, 55 9)T )
=-—m(s,t)(1®@TI) +m(s,t)(1®T)

(Z:M)EH 90d NOLIVTINDTVD 'S¢

09



2.5. CALCULATION FOR H3(W;Z) 61

2.5.8. Collapse map. In this section we define a chain map, which we call the collapse
map, between De Concini and Salvetti’s resolution for a finite Coxeter group W, and for a
subgroup Wr [18].

In the isotropy spectral sequence for the Davis complex, introduced in Section we
calculate that on the E' page, the d' differential has the form of a transfer map between
summands H,(Wr;Zr) and H,(Wy; Zy) for U C T, given in Proposition In the fol-
lowing sections we calculate these twisted homology groups using the De Concini and Salvetti
resolution. Upon applying the transfer map to a generator of the homology H.(Wr;Zr), the
image will be in terms of the resolution for the group Wr. However we would like the image to
be in terms of the resolution for Wiy and so we then apply the collapse map in the appropriate
degree to achieve this.

We first recall the following Lemmas, which are re-workings of Lemmas from [27], into
settings relevant to this section. Recall from Definition that m(a,b; k) is defined to be
the word of length k, given by the alternating product of a and b i.e.

length k

—_——
m(a,b;k) = abab. ..

LEMMA 2.5.9 (Deodhar’s Lemma, see Geck and Pfeiffer [27], 2.1.2] ). Let Wy be a spherical
subgroup of a finite Coxzeter group W. Let v be (T,0)-reduced (as defined in Deﬁnitionm
and let s be in S, the generating set for W. Then either vs is (T,0)-reduced or vs = tv for
somet inT.

LEMMA 2.5.10 (see Geck and Pfeiffer [27], 1.2.1)). If s,u are in S, m(s,u) is finite, and
w in W satisfies L(ws) < L(w) and L(wu) < £(w) then w = w'(w(s,u;m(s,u))) where w' is
(0, Wisuy)-reduced, as defined in Definition .

DEFINITION 2.5.11. Denote the De Concini - Salvetti resolution for W by (C, d,) and for
Wr by (Dy, d.). We define the collapse map in degree i to be the Wp-equivariant linear map

fi : C; = D; for 0 <4 < 2 as shown below.
03 02 o1 8

Cy Ch Co .7
fzt fll fol
% p,-2.p, - p, 27

As a Z[W] module, C, has basis given by e(I'), so as a Z[Wr] module, C, has basis given
by v - e(T'), for v a (T, 0)-reduced element of W. We therefore define f; on generators of C;
multiplied on the left by v and extend the map linearly and Wr-equivariantly. By Deodhar’s
lemma (Lemma for s € S, vs is either (T, 0)-reduced or vs = tv for some ¢ in T. This

gives us the cases in each definition.

fo(vly) = Ty,
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0 wsis (T,0) reduced
I't vs=tvforteT

fl(UFs) = {

0 vs is (T, 0) reduced
'~y vs=tvforteT

f? (Ursjs) {

I'ty vs=tvandvu=rvfort,reT
fZ(UFsu) == { "

0 otherwise.
The remainder of this section is devoted to proving that f, is a chain map.

LEMMA 2.5.12. The following square commutes:

Co-2s7

1

0

Dy — Z.

ProoFr. On wl'y for w in W, the square is given by

1
wly —— 7

|

1
f() (’LUF@) O*> Z
since f is defined Wp-equivariantly then if w = tv for ¢t in Wy and v a (T, 0)-reduced element
then from Definition 2.5.11]

fo(wTy) = fo(tvly) =t - fo(vTy) = tTy.

It follows since dp maps all generators to 1 that the square commutes. ]

LEmMA 2.5.13. The following square commutes

01L>CO

|

Dy — D,.
PROOF. Since all maps are Wy-equivariant, let w = tv for ¢ in Wy and v a (T, 0)-reduced
element. Then we need only consider the square on generators multiplied by v. We recall the

image of d; from Example
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4
Ty — = v(s — )T

fll foI
FL(0Ts) == fo(w(s — 1)Ty).

Here there are two cases for the element vs, given by Lemma [2.5.9 which give the following
cases for fy, from Definition [2

0 vs (T, 0) reduced
(t—1y wvs=to.

fo(v(s = 1)Fp) = {

This is precisely the image of fi(vI's) from Definition [2.5.11} under the differential §;. There-
fore the square commutes. ]

LEMMA 2.5.14. For s and u in S, consider the following three cases, given by Deodhar’s
Lemma [2.5.9:

(1) Neither vs or vu are (T,0)-reduced, that is vs = tv and vu = rv for t and r in T.
(2) One of vs and vu is (T, 0)-reduced, without loss of generality let vs = tv and vu is

(T, 0)-reduced.
(8) Both vs and vu are (T, 0)-reduced.

Recall the definition of p(s,t;m) from Definition|2.5.4. Then

fi (o (S =0 (s, s )T + 5 (1) 2p(u, 51 )T )
92(Ts)  in Case (1)
=40 in Case (2)
0 in Case (3).

PROOF. We prove the lemma case by case. For Case (1), since f; acts Wp-equivariantly,
filv(p(s,u; ))Tw)) = fi(p(t, 73 5)vlu) = p(t,r35)(fr(vTw)) = p(t, 73 )T
and similarly

J1 (’Up(u, 53 g)Fs) = p(T, t;g)rt-

Furthermore, m(t,r) = m(s,u) since
w(t,r;m(s,u))v = vr(s,u;m(s,u)) = vr(u, s;m(s,u)) = w(r,t;m(s,u))v,

and right multiplication by v~! gives that 7(¢,7;m(s,u)) = m(r,t;m(s,u)), so m(t,r) is a
divisor of m(s,u). Furthermore, applying a similar argument in reverse gives m(s,u) is a
divisor of m(t,r), and so m(s,u) = m(t,r).
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Therefore since f1 acts linearly

m(s,u)—1 m(s,u)—1
fi ol (=17 p(s, s )T + Z 1)92p(u, s; )Ts)
7=0
m(t,r)—1 m(t,r)—1
= (=1 p(t, 75 5)Tr + (=1)9"2p(r,t; g)T
j=0 g—=0
- 52(1—‘151“)

in the setting of Case (1).

For Case (2), we first prove that if vs = tv and vu is (T, 0)-reduced, then v(7w(u,s;k))
is also (T, 0)-reduced for all 2 < k < m(s,u) — 1. First we note that since vs = tv, from
Lemma L(vs) > L(v). Suppose v(7(u,s;k)) was not (7', 0)-reduced and choose minimal
k for which this is the case (so v(mw(u,s;k — 1)) is (7T, 0)-reduced). Then for some ¢ in T it
follows v(m(u,s;k)) = qu(m(u,s;k — 1)) and so w = v(w(u, s; k)) satisfies the hypothesis of
Lemma [2.5.10] that is ((wu) < £(w) and £(ws) < £(w). Therefore w = w'm(u, s;m(s,u))) =
v(m(u,s;k)), so by right multiplication by (7(u,s; %))~ we have v = w'p(s,u;m(s,u) — k),
where we recall p(s,u;m) is the alternating product of s and u of length m and ending in s.
Therefore v satisfies {(vs) < ¢(v). This contradicts vs = tv, so we must have v(7(u, s; k)) is
also (T, 0)-reduced for all 2 < k < m(s,u) — 1. Computing f; on the expressions of the sum
therefore gives:

fi(v(m(u,s;7)Ty)) =0 jiseven, j # m(s,u) —1
» )t filvr(u,s;j = 1)0y) =t-0=0  jisodd, j #m(s,u)—1
filw(pls, ui g)Tu)) = filom(u, s;m(s,t) — 1)ITy) =Ty j=m(s,u) — 1 and is even

t- fi(vm(u, s;m(s, t) —2)Iy,) =t-0 j=m(s,u) —1 and is odd

and similarly

[ fL(uTy) = T g=0
t- fi(vm(u,s;9— 1)) =t-0=0 giseven, g ¢ {0,m(s,u) — 1}
fi(vp(u, s;9)Ls) = < fi(vm(u,s;9)Ts) =0 g is odd, g # m(s,u) — 1

t- frlvm(u,s;m(s,t) —2)Is) =t-0=0 g =m(s,u) —1 and is even
L fi(om(u, s;m(s,t) — 1D)I) =Ty g=m(s,u) —1 and is odd




2.5. CALCULATION FOR Hs3(W;Z) 65

so it follows

m(s,u)—1 m(s,u)—1

fifveC (=1)" ' p(s, u; )T + Z 1)7"2p(u, s; g)Ts )

YRS (=1)™sH=1420, = 0 if m(s, u) even
Ty + (—1)™EwW=141D, =0 if m(s,u) odd
in the setting of Case (2).
For Case (3), if both vs and vu are (T, 0))-reduced, by the same argument as in Case (2),
v(m(u, s;k)) and v(m(s,u;k)) is also (T, 0)-reduced for all 2 < k < m(s,u). It follows that
computing f; gives:

m(s,u)—1 m(s,u)—1
Z 1 p(s,u; §)Ty + Z 1)9"2p(u, s;9)Ts) | =0
7=0
in the setting of Case (3). O

LEmMA 2.5.15. The following square commutes

C2i>01

f2l fll
o2

Dy —— D;.

PROOF. Since all maps are Wy-equivariant, let w = tv for ¢ in Wy and v a (T, 0)-reduced
element. Then we need only consider the square on generators multiplied by v. We recall the
image of do from Example We must consider both forms of generators of Cs:

62 v(zz”%““( 1)7+Lp(s, t; )T

[
vlss ;>v(1+s)f‘s vl ——

’ + T ()92 (u, 53 g)T)
le f1[ I
f2 f1

f2(UFst) L)fl(v(l"i_s)rs) ( ( )—1 i1
or,) 2 il st" (=1) (s, u; J)Ty
Plloa) = St pyorzypu, s g)r)).

Computing f1(v(1 + s)I's) we have

0 vs is (T, 0) reduced

filo(1 + )Ts) = {(1 + )y vs = to.

This is precisely the image of fa(vI's5s) from Definition [2.5.11] under the differential d.
Therefore the left hand square commutes.
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The bottom right entry of the right hand square is given in Lemmal2.5.14] This is precisely
the image of fa(vI's,,) from Definition [2.5.11] under the differential d,. Therefore the left hand
square commutes. O

PROPOSITION 2.5.16. The maps fo, f1 and fo in Definition |2.5.11] form part of a chain
map fo: Ce — De.

PRroOOF. This is a consequence of Lemmas [2.5.12] [2.5.13] and [2.5.15] which show that all
squares in the following diagram commute

1) J: ) )

3 Cy 2 c, 1 Co 07
f2L fll fol

“ p,-2.p, " p, 2.7

0

2.5.17. Homology at Eé’g. Recall the isotropy spectral sequence for the Davis complex
of a Coxeter group W has E' page as follows:

1 1 1
3| Hy(WyiZy) <& @ HsWiZy) <& @ Hi(WriZp) <~ @® Hy(WriZp)
tes TeS TES
|T'|=2 |T|=3
dt dt dt
2 HQ(WQ);Z@) — @HQ(I/Vt;Zt) — D HQ(WT;ZT) — D HQ(WT;ZT)
tes TeS TES
|T|=2 |T|=3
dl dt . dt
1 Hl(W@;Z@) < @Hl(VVt;Zt) — D Hl(WT;ZT) — D Hl(WT;ZT)
tes TeS TeS
|T|=2 |T|=3
dt dt dt
0| Ho(Wy:Zg) <— @ Ho(WyZy) <— & Ho(Wr:iZy) <— & Ho(WpiZy)
tes TeS TeS
|T]=2 |T|=3
0 1 2 3 4

and the E> page gives us filtration quotients of H3(W;Z) on the blue diagonal.
Then the E&g entry is zero because it is the third integral homology of the trivial group,
Hs(Wy; Zy) = 0, on the E' page. Therefore Ea?) and EF% are zero.
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2.5.18. Homology at Ell’z. To calculate this, we use the De Concini - Salvetti resolution
[18] to compute the twisted homologies, and the transfer and collapse map to compute the
differentials for the following section of the spectral sequence:

1 1
Hy(Wy: Zg) <2 @ Hy (W, 7)) =<2 @ Ho(Wr; Zr).
tesS TeS
T|=2

We note that Ho(Wy;Zgy) = 0 since it is the second homology of the trivial group.

LEMMA 2.5.19. The second twisted homology for a one generator Coxeter group Wy is
Hy(Wy; Zy) = Zo, generated by 1 @ I's~g in the De Concini - Salvetti resolution.

PROOF. This calculation is in Appendix [B] O
LEMMA 2.5.20. If T = {s,t} then the second twisted homology the following,

Hy(Wrp; Zr) = 29 22 Z.fm(sv ) Z.S even
Zy if m(s,t) is odd,

and in the De Concini - Salvetti resolution this is generated by 1 @ I's5s and 1 ® 'y when
m(s,t) is even, with these generators being identified when m(s,t) is odd.

PROOF. This calculation is in Appendix [B] O

LEMMA 2.5.21. The transfer map
dl . D HQ(WT;ZT) — @H2(Wt§Zt)
TeS tes
IT|=2

restricted to the summand relating to T = {s,t} in the source and restricted to the summand

s and t in the image is given by
d%w’s : HQ(W{SJ&};ZT) — HQ(WS;ZS)
1®Ts5s, 1@ ot
1®@Dsns — 1@ if m(s,t) odd

I

0 if m(s,t) even

dp s Hy(Wis 3 Zr) —  Ha(Wy Zy)
1@ Ts5s5, 1@ T = 0 if m(s,t) even
1®@Ts5s — 1@~ if m(s,t) odd.
PROOF. This calculation is in Appendix O

ProproSITION 2.5.22. The Eiz entry on the E? page of the spectral sequence is given by
Ho(Dodd; Zz)-



2.5. CALCULATION FOR Hs3(W;Z) 68

PROOF. We have the following groups and differentials on the E' page:
dl
Ho(Wy; Zy) <— © Ho(Wy; Zy) ® Ho(Wrp;Zr)
tesS TeS

T|=2
d* d* Lo ® Zy if m(s,t) even
0~——— B Z
tées ? TEGBS L if m(s,t) odd.
|T|=2

The left hand map is the zero map and the right hand map is defined via Lemma
Applying the splitting technique as in the proof of the Ho(W;Z) calculation (i.e. as in Propo-
sition , we can equate the kernel of the left hand map over the image of the right hand
map to the Oth homology with Zy coefficients of the diagram with only odd edges, Dygq. U

2.5.23. Homology at E21’1. We use The De-Concini Salvetti resolution to calculate

Fi = o H\(Wp;Zr),
1= @ 1(Wr; Zr)
|T|=3

the first twisted homology of spherical subgroups with 3 generators. After calculating these,
we use the transfer and collapse map to compute the d' differentials and therefore we can
compute E2271. The E! page as E2171 has the following form:

d! d!
EB Hl(Wt;Zt) < (D Hl(WT; ZT) < EB Hl(WT;ZT).
tesS TeS TeS
|T|=2 |T|=3

Using De Concini - Salvetti we can calculate the first homology of the spherical subgroups.
The formulation of the twisted resolutions and homology calculations are of a similar nature
to those for the 1 generator and 2 generator cases that we have described in some detail
throughout the preceding sections.

PROPOSITION 2.5.24. The first homology Hy(Wr; Zr) is as follows for spherical subgroups
Wr with T = {s,t,u}. Generators are given by the De Concini - Salvetti resolution for Wr:
we let

a=(1®T)— (18T, and B=(1®T,) — (1®T,).
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Wt Dw, H\(Wr; Zr) Generator

W(A3) —o—o L3 «
st u

W(B3) o—/Lo—o Lo a=p
st u

W(H3> oio—o 0
st u

W(I(p) x W(A1) | e« o o | Zo®Zo ifpiseven | a,B8 ifp is even
5t U Zs if p is odd B if p is odd
PROOF. These calculations are in Appendix O

PROPOSITION 2.5.25. When T = {s,t},
Hy(Wr; Zy) = Hi(I2(m(s,1)); Zr) = Zup(s 1)
with generator in the De Concini - Salvetti resolution for Wp given by y =11 — 1 ® I';.
PRroOF. This calculation is in Appendix O

PROPOSITION 2.5.26. The first twisted homology of the one generator Coxeter group
W (A1) with generator s is Hi(Ws;Zs) = 0.

PrOOF. From Example the twisted resolution has the form
o1

[
Z® Cy—=17® Cy Z ® Co
W W Wi
Generators: 1®T~s 1®T 1Ty
Differentials: 1@l —— —2(1®TYy)
1®Tgns——0
and so the kernel of §; is 0, which completes the proof. O

DEFINITION 2.5.27. If the homology of a Coxeter group H;(Wrp;Zr) for a group Wr
represented by a diagram Dy, only has one generator, then we represent that generator in
the group

© H;(Wr;Zr)
TeS
|T|=p
by drawing the diagram Dyy,,. Suppose Wy is a subgroup of Wz. We represent a non-zero
differential in the E' page from the generator of H;(Wr;Zr) to the generator of H;(Wy; Zy)
by drawing a map from the diagram Dyy,. to the diagram Dyy,,. If the differential is zero, we
do not draw the subgroup diagram.
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EXAMPLE 2.5.28. We will see in the next proposition that the generator for Hy (W (As); Zr)
is mapped by the transfer map d! to the generator for Hy (W (Az); Zr), when W (Asz) is a sub-
group of W (As). We represent this as:

dl
& Hl(WT;ZT) ~— &P Hl(WT;ZT)
TeS TeS
|T|=2 |T|=3

.—.@.—. *————0

which shows the diagram As to represent the generator for H; (W (As3); Zr) when W (As3) has
generating set {s,¢,u}. The two subdiagrams correspond to the generators for Hy (W (Az2); Z)
for the two possible W (Az) subgroups generated by {s,t} and {t,u}. Then this map shows
that the generator for Hy of Wy, ;1 maps via the d' differential to the generator for H; of
Wi,y minus the generator for Hy of Wy 3.

PROPOSITION 2.5.29. The differentials on the E' page at ]_1?2171 are given as in the diagram
below, where the diagram notation from Definition is used. Note here that diagrams
representing homology of W (Hs) and W (I2(p)) x W (A1) for p even are included, even though
their homologies have none and two generators respectively. However the d* differential map-
ping from the homology of either group is zero, and so this does not affect the notation.
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d* dt
& HWyZy) <—— & H(WriZy)<— & Hi(Wr;Zr)
tes TS

TeS
|T|=2 |T|=3
p even
5t
p_odd
S t

)
2o o
s t u

p even
s t u
° o Do .<—{p.idgi °
S U t U s t u

PROOF. Recall the diagram notation from Definition This proof involves calculat-
ing the differential d* (which is the transfer map on each summand by Proposition on
the generators of the homology groups, followed by the collapse map from Definition
which gives the image of this map in terms of the De Concini - Salvetti resolution for the
smaller group. These calculations are in Appendix O

PROPOSITION 2.5.30. Recall from Definition the definition of the diagrams Dee and
Da,. Then the E%l entry is given by

HO(Doo; ZZ) @ HO(DAQ;Z?)) b ( Zm(s,t)) .

m(s,t)>3,700
ProOOF. Consider the d' differentials at E%J, as given in Proposition |2.5.29, Applying the
splitting technique as in the proof of the Ho(W;Z) calculation (i.e. as in Proposition [2.4.10)),

we can equate the the kernel of the right hand map over the image of the left hand map to
the three summands in the proposition. ]
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2.5.31. Homology at E§70. To calculate this one needs to consider the index of spherical
subgroups inside spherical subgroups, as in Section [2.4.4 and in particular Lemma[2.4.6] which
gives us that on the bottom row letting the generator of Ho(Wr;Zr) = Zg be denoted by 11
gives the following transfer map, when T” is a subset of T'.

dp g s H(Wr;Zr) —  Ho(Wrv; Zgv)
ZQ — ZQ
{ 0 if |Wr|/|Wr| is even
lr — . .
1T’ if ’WT|/|WT/‘ is odd.

Considering the maps at E§70 in the spectral sequence, we have the following

dt . . dt
® HWrp;Zp)<— & Hi(WpiZp) <— @& Ho(Wrp;Zr)
TeS TeS TeS
IT|=2 T|=3 T|=4
1 1
® Zo @ Zo ® Zo
TeS TeS TeS
IT|=2 IT|=3 T|=4

LEMMA 2.5.32. Recall the notation introduced in Definition where if the homology
of a Coxeter group has one generator, we represent that generator by the corresponding Cozeter
diagram. With this notation, the d* differentials at E§70 are given by the following maps

d! : , dt
© Ho(Wr; Zr) © Ho(Wr; Zr) © Ho(Wr;Zr)
TeS TeS TeS
|T|=2 |T|=3 |T|=4
d! d!
b Zo D Zo ® Zo
TeS TeS TeS
IT1=2 T]=3 IT|=4
o o T o ° ’ M@
t u S U st u
*———0 + *———0 I — *—1——0
s t u t u v s ¢+ u v
. deven o q even 2 odd g even
t u v S U v St u v
° ﬁ odd + ° =z odd +
t u v S U v
. 2 odd g odd
eodd « + Eodd o s t+ u v
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PRrOOF. From Lemma we know the image of the transfer map

dl D B Zog— D Zo.
TeS TeS
IT|=3 IT|=2

To compute the transfer map
d - ® Zo— & Zo.
TeS TeS
|T|=4 IT|=3
we need to consider the index of subgroups with three generators inside finite groups with
four generators, by Lemma This information is displayed in the following table, where

p and ¢ are natural numbers greater than or equal to 2:

Dw ’WT| |W{s,t,u}| |W{s,t,v}| |W{s,u,v}| |W{t,u,v}|

— o o o 120 24 12 12 24
S t u v
et o o o 384 48 16 12 24
S t u v

s:>._. 192 24 24 8 24

t u v
D o o o | 14400 120 20 12 24
S +{ u v
—ole o 1152 48 12 12 48
S t u v
——o o o 48 24 12 8 12
S t u v
ot e o o 96 48 16 8 12
S + u v
2o o o 240 120 20 8 12
S t{t u v
ol o olo |2nx2¢| 4p 4p 4q 4q
S t u v

Computing the index of each subgroup gives non zero maps as required.
O

PROPOSITION 2.5.33. Recall from Definition the definition of the diagrams D5) and
D and Dy,. Then the E:%,o entry on the E? page of the spectral sequence is given by

EcVeEN

B = Hi(De; %) © Ho(D, (0 3 70) ® Ho(DayiZ2) © (@ o)

W(H3)CW
W (B3)CW

cven
—e

where the sum over W (Hgz) CW and W(Bs) C W is viewed as a sum over all subsets I C .S
such that Wy is of type B3 or Hs.
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FIGURE 2. The E? page of the isotropy spectral sequence for the Davis com-
plex of a Coxeter group W.

PRrROOF. Splitting the d' differentials of Lemma as in the proof of the Hy(W;Z)
calculation (i.e. as in Proposition, we can equate the kernel of the left hand differentials
over the image of the right hand differentials to the components on the right hand side of the
above expression. This gives the formula for the E? term as required. O

2.5.34. Further differentials are zero. Recall the isotropy spectral sequence for the
Davis complex associated to a group W, given in Figure Then from the calculations of
EZ2 ; for the diagonal ¢ + j = 2 in Section and the diagonal ¢ + j = 3 in the previous four
subsections, the spectral sequence has E? page as shown in Figure



2.5. CALCULATION FOR Hs3(W;Z) 75

Where A is Hyo(Doaa; Z2),
B is Ho(Dee; Z2) & Ho(Day; Z3) & (& Ly

m(s,t)>3,700
and C is H1(Dgy; L) ® Ho(D ooy, 522) © Ho(Dayi Z2) © (& Zo).
o o—o W(H3z)CW
W(B3)CW

The E* page of this spectral sequence gives us filtration quotients for Hs(W;Z) (up to
extension) on the blue diagonal. The argument in this section shows that all possible further
differentials to and from the blue diagonal are zero. Since the spectral sequence is first
quadrant, all possible further differentials out from the groups A and B are zero, and one can
see from the diagram that the possible d? and d? differentials from C' also have target groups
0. Therefore there are only 3 possible further differentials that may affect the blue diagonal:

(1) d?: Eil — A

(2) d*: Ej,— B

(3) d*: B}y — EY,.
To compute these differentials we first prove two lemmas which will reduce the cases for which
we compute Eio.

Denote the isotropy spectral sequence E(A x B) for Coxeter group W4 x Wg, where Wy

and Wp are non trivial finite groups, and the size of their generating sets add to 4. Then the
Eio term in the spectral sequence is

Ejo= Ho(Wa x Wp; Zaup).

LEMMA 2.5.35. With notation as above, the possible d* and d® differentials originating at
Ej o, form =2 orr =3, in the spectral sequence E(A x B) are zero.

PRrROOF. By the Kiinneth theorem for group homology (see e.g. [12]) we have the short
exact sequence:

0= P Hi(WasZa) ®z Hj(Wp; Zp) = Hy(Wa x Wp; Zaup)
i+j=k
— @ TOT‘%(HZ'(WA;ZA),HJ‘(WB§ZB)) -
itj=k—1

since Z ® Zg = Z s, and when k = 0 we have
@ Tor((Hy(Wa;Za), Hj(Wg; Zp))
itj=k—1
= P Torl(Hi(Wa;Za), Hj(Wp; Zg))
i+j=—1
=0
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hence the short exact sequence gives
Ho(Wa;Z4) @z Ho(Wp; Zg) = Ho(Wa x Wp; Zaup)-

By Theorem [2.3.19| there is a pairing
o, : E(A)® E(B) — E(Ax B)

which is given on individual summands by the Kiinneth map. Therefore for Eio (since it has
only one summand) @, is given by the Kiinneth map above, which is an isomorphism. Under
the pairing @, all cycles in Eio in E(A x B) therefore correspond to a pair of cycles: one in
E;,o in F(A) and one in Eifp’o in E(B). Since moving from page E” to page E ! calculates
homology with respect to d”, cycles in Eio in F(A x B) will be quotients of cycles in Eio in
E(A x B), and cycles in Eio in E(A x B) will be quotients of these.

Under @, the differentials satisfy a Leibniz rule: in the image of the pairing the differentials
d" for the spectral sequence E(A x B) can be written in terms of the differentials d" for the
spectral sequence E(A) and the spectral sequence E(B). Since all cycles in B for r = 1,2,3
in £(Ax B) are defined via ®, on the E' page, it follows that the differentials d” originating at
these positions are defined purely in terms of the differentials d” in E(A) and E(B) originating
at this position, via a Leibniz rule.

Since the number of generators in W, or in Wp is less than the number of generators in
Wa x Wp, the differentials in F(A) and F(B) that occur in this Leibniz rule will originate at
E} o where p < 4. But all possible targets of a d? or d? differential from such an E} , are zero,
since they are zero on the E? page of both E(A) and E(B) (consider the spectral sequence
in Figure . Thus the further differentials mapping from Ej  in E(A x B) are zero. O

LEMMA 2.5.36. Consider a differential d* or d® originating from a summand in E} o for
r =2 orr =3, in the isotropy spectral sequence for a Coxeter group W. If the corresponding
cycle at the Ei,o term is a summand Ho(Wa x Wg;Zaug), for Wa and Wpg non-trivial
subgroups of W, then the d* or d® differential is zero.

PrOOF. By Lemma [2.3.16] the inclusion of groups Wy x Wp < W gives an inclusion of
spectral sequences on the E' page

E'(A x B) — EY(W).
Therefore differentials mapping from cycles corresponding to the Ho(Wa x Wg;Za ) sum-
mand at position E}, in E(W) will be given by differentials in E(A x B).

From Lemma [2.5.35|the d? and d° differentials originating at the E} o position are zero in
E(A x B). This completes the proof. O

COROLLARY 2.5.37. Consider d*> and d* differentials originating at summands in Eio and
Eio. If the corresponding cycles at the Ei,o term come from Hy(Wrp; Zr) such that Wy is one
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of the following groups, then the d*> and d® differentials are zero. Below p and q are integers
greater than or equal to 2.

o0 [
s t u v
o—/Lo—o )
s t u v
.i.—. [
s t u v
oo ol

V)
g
IS
<

We therefore only need to consider the EZ’O components which come from the

cycles relating to the groups which do not arise as products, namely for Wy of type Ay, By, D4, Fy
and Hy. Recall that all Coxeter groups satisfy Ho(Wr;Zr) = Z2 and recall the notation of
Definition which allows us to represent this homology class by the corresponding Cox-
eter diagram.

LEMMA 2.5.38. With notation as above, the differentials on the E' page at the Ei,o position
for the summands Ho(Wr; Zr) corresponding to Coxeter groups of type Ay, By, D4, Fy and Hy
have the following form:
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d* dt
& Ho(Wr;Zr) ® Hoy(Wrp;Zr) <— @& Ho(Wr;Zr)
TeS TeS TS
|T|=3 |T|=4 |T|=5
dl dat
P Zo B Zo D Zo
TEeS TES TS
|T|=3 |T|=4 IT|=5
5 ¢ ft u v s + u v

PrROOF. From Lemma we have the maps from the central groups to the left. The
finite Coxeter groups with 5 generators for which the Ay, By, D4, Fy and H, diagrams are
subdiagrams are the groups of type As, Bs, D5 and the product groups of type A4 x Ay, By X
A1,Dy x A1, Fy x A7 and Hy X A;. Recall from Lemma that the transfer map on the
bottom row is determined by the index of the subgroup. In the case of the product groups,
the index of the corresponding 4-generator subgroup is 2 and hence the transfer map is zero.
We are therefore left with the following computations:

o |W(Ay)| =120, |W(A5)| =720 so [W(As5) : W(A4)| =6
o |W(By)| =384, |W(Bs)| = 3840 so |W(Bs) : W(By)| = 10
o [W(Dy)| =192, |W(Ds)| = 1920 so |W(Ds) : W(D4)| = 10

which we compute using Python and [26], though formulas for each group size can be found
n [33]. Since in each case the index of the subgroup is even, the transfer map is zero. O

PROPOSITION 2.5.39. If the d' differential originating at a summand H,(Wr;Zz) on the
E' page of the isotropy spectral sequence is identically zero on the chain level, then the higher
differentials which originate at cycles corresponding to Hy(Wr;Zt) on the E page are also
Z€ero.
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ProOF. The d! differential of the isotropy spectral sequence is given by the transfer map
on the chain level by Proposition[2.3.15] In general higher differentials of the spectral sequence
for a double complex are induced by combinations of the differentials on the chain level, and
lifting on the chain level. For example given a double complex C,, the d? differential is
induced on the chain level as follows:

d2

Cpr,qul =~ Cpfl,qﬂ
4
lift:

Cp—lyq < Cp,q

Therefore if the d' differential is zero on the chain level for the cycle representing a term Ey 4

then the higher differentials will also be zero. g

COROLLARY 2.5.40. The d? and d? differentials originating at the E§ 4 position for r =2
or v = 3 corresponding to cycles on the Eio summands for groups of type By, Dy, Fy and Hy
are zero.

PRrOOF. This is a consequence of Lemma and Proposition if we prove that
the transfer maps given in Lemma on the chain level originating at Ho(Wr;Zr) for
these groups are identically zero (and not just zero modulo 2). This is satisfied if, alongside
there being an even number of cosets, there are identical numbers of cosets with odd and even
length. Then the transfer map on the chain level for Cy:

tr : ZT’ — Zr

m Z g-m

gEWp \Wr

will map identically to zero, since the coset acts on m as the identity if it has even length and
negation if it has odd length. Using Python [26] we write a short program which returns the
number of coset representatives of even and odd length, given a group and a subgroup. The
code can be found in Appendix [A] We then compute that in the cases of By, D4, Fy and Hy,
every three generator subgroup has an equal number of even length and odd length cosets.
Therefore they transfer identically to zero, so we can apply Proposition O

We are therefore left with a potential d? or d® differential originating at the Ej 4 position for
r =2 or r = 3, corresponding to cycles on the Eio summand Hy(W (A4); Zr). This summand
is non-zero when W (A,) arises as a spherical subgroup of W. We compute the spectral
sequence for W (A4) and note by Lemma that any further differentials occurring in the
spectral sequence for W corresponding to this summand, will occur in the spectral sequence
for W(Ay4), via the inclusion of W (A4) into W.
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LEMMA 2.5.41. The potential d*> and d® differentials originating at the E§ 4 position for
r =2 orr =3 and corresponding to cycles on the Ei,o summand Hy(W (A4); Zr) are zero.

Proor. If the further differentials were non zero then they would also be non zero in the
spectral sequence for W (A,) by Lemma [2.3.16, The E? page for the Coxeter group W (Ay) is
given by

2 0 Zo ?
1 0 0 Zo®Zs ?

0 Z ? ? Zo ?

0 1 2 3 4

and the computation of this is given in Appendix [B] Therefore the blue diagonal in the
spectral sequence contains the groups Zo, Zo @ Z3 and Zo. The third integral homology of the
symmetric group on 5 letters, which corresponds to W (Ay), is

Hs(W(A4);Z) =719 ® Lo = Lz & Ly & Lo

which is precisely given by letting the groups on the blue diagonal be the E*° terms, or
filtration quotients for H3(W (Ay4);Z) (here there is a non-trivial extension of Zs by Zs to get
Z4 which we will discuss in the following section). Therefore the E? page is equal to the E>
page on the blue diagonal, and so no higher differentials in or out of this diagonal are are
non-zero. O

PROPOSITION 2.5.42. The possible d* and d® originating at the Ej} o group in the spectral
sequence are zero.

PRrOOF. This is direct result of putting together Corollaries|2.5.37]and [2.5.40| and Lemma
2.5.411 O

To compute the potential d? differential from Eg’l to E1272, we first compute the Egl term
in the spectral sequence.

LEMMA 2.5.43. We have the following first homology groups Hi(Wr; Zr) for finite Coxeter
groups with 4 generators. Generators are given by the De Concini - Salvetti resolution for
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Wr: we let
a = (1el)—-1ely),
(1 X Fs) - (1 ® Fu)v
v = (1T —(1aTly,).
Wr Dw,. H\(Wr; Zr) Generators
W(A4) —eo—0o—o 0

W (By) oio—o—o Zs a=p=vy

W (Fy) ._._/L._. Lo B=x

t
W(Dy) :>—~ L3 B
R
s
Zio D Lo D 7o D, q even a, B,y
Zo & Zo p odd, q even B,y
W(IL(p) x W(I2(q)) | Lo o-le
st u v Zo ® 7o p even, q odd a,B=x
Lo p,q odd B=x
W(A3) X W(Al) —eo—o o L Y
s t u v
W(Bs) x W (A1) g—sz—a . Ly ® Lo a=f,
W(Hg) X W(Al) ._._.5 PY ZQ v
s ¢+ u v
ProOOF. These calculations are in Appendix O

LEMMA 2.5.44. Recall the notation introduced in Definition [2.5.27, where if the homology
of a Cozeter group has one generator, we represent that generator by the corresponding Cozxeter
diagram. Using this notation, the d* differentials on the E' page at the position E11’3 are given
by the following maps. Here we note that some of the groups satisfy that the homology has
two or more generators. In all but one case these generators all map to zero, which is shown
by no map originating at the diagram. In the isolated case Is(p) X I2(q) where p is odd and q
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is even, the two generators are mapped to the two generators for the subgroups shown by the
identity map.



& H\(Wr;Zr)
TeS
IT|=2

[ ] [ ] @ [ ] [ )
t u s u
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@ H] (V[Yl Zl)

dl

83

TeS
|T|=3

& H\(Wr;Zr)
TeS
IT|=4

©we

p even even
*—1
s + u v

w

-
g
<o

w

-~
IS
<o
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PRrROOF. The left hand maps are given by Proposition [2.5.29, We compute the transfer
and collapse maps on the right using Python, as in the sample Example in Appendix [A]
These calculations are in Appendix [B] O

Denote the isotropy spectral sequence E(T x V') for Coxeter group Wrp x Wy, where Wy
and Wy, are non trivial finite groups, and the size of their generating sets add to 3.

LEMMA 2.5.45. With notation as above, the possible d* differential originating at Eil, m
the spectral sequence E(T x V') is zero.

PrOOF. Note that by the Kiinneth theorem for groups:

H\(Wp x Wy Zpoy) = (HH(Wr; Zr) @ Ho(Wv; Zy)) @ (Ho(Wr; Zr) @ Hi(Wy; Zy))
@TOT%(H()(WT;ZT),H()(Wv;Zv))

By Theorem [2.3.19|if the d? originates from either the (Hy(Wr; Zr)® Ho(Wy; Zy)) component
or the (Ho(Wr;Zr) @ Hi(Wy;Zy)) component of the right hand side of the isomorphism, it
is in the image of the pairing

o, : E(T)®@ E(V) = E(T x V)

which is given by the Kiinneth map on components.

In the image of ®,, the d? differential on the left hand side satisfies a Leibniz rule. That
is the d? differential on E(T x V) is determined by the d? differentials on E(T) and the d?
differentials on E(V'). By similar reasoning as in the proof of Lemma these differentials
are zero, and therefore via the Leibniz rule the d? originating at a cycle in the image of ®, is
Zero.

It remains to show that a d? differential originating at a cycle corresponding to the Tor
summand of the right hand side of the Kiinneth isomorphism at E§,1 in E(T x V) is zero.
That is, the group Tor?(Ho(Wr; Zr), Ho(Wy; Zy)) = Zs and there may exist a d? differential
corresponding to a map originating at this Zs. Consider the following short exact sequence:

Hy (W x Wy Zooy) S Hy(Wr x Wy Zroy) B Hy(Wr x Wy Zo)

where po is mod 2 reduction. The class corresponding to T'or (let’s call it «) in the middle
summand will satisfy pa(a) # 0, since it represents 2-torsion, but by the Kiinneth formula,

Hy(Wr x Wy Za) = (Hi(Wr; Zo) @ Hy(Wv; Z2)) © (Ho(Wr; Z2) @ Hi(Wy; Zs)).

Therefore, if we consider the isotropy spectral sequence for Wy x Wy, but with Zs coefficients,
i.e. the sequence for H,(Wp x Wy ; Zs), by the pairing of spectral sequences in Theorem
and the same reasoning as the proof of Lemma the class corresponding to p2(a) will be
mapped to zero under the d? differential: d?(p2()) = 0. However the target of the differential
is all 2-torsion (it is given by Ho(Dodd; Z2)) and so this survives in the reduction ps. Since the
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d? differential commutes with mod 2 reduction, computing d> on « and then reducing should
give the zero map, i.e.

pa(d(@)) = d(pa(a)) = 0.
Since the target is unchanged by reduction, ps(d?(a)) = d*(a) and so d?(«) must be zero. [

LEMMA 2.5.46. Suppose a d? differential in the isotropy spectral sequence for W originates
at a cycle in E§71 represented by a homology class in Eél of a subgroup W x Wy of W such
that neither Wy or Wy, is the trivial group. Then this d* differential is the zero map.

PRrROOF. By Lemma [2.3.16] the inclusion of groups Wp x Wy — W gives an inclusion of
spectral sequences on the E' page

EYT x V) — EY(W)

such that in the image of the inclusion the differentials in E(T" x V') give the differentials in
E(W). Therefore all cycles corresponding to the Hi(Wp x Wy ; Zpy) summand at position
Ej, in E(W) will be given by differentials in E(A x B).

From Lemmathe possible d? differential originating at Eg}l, in the spectral sequence
E(T x V) is zero. This completes the proof. O

PROPOSITION 2.5.47. The possible d* differential originating at the E22,,1 group in the
spectral sequence is zero.

Proor. The E?%,l entry is calculated by computing the homology of the sequence given in
Lemma [2.5.44] Its origin is therefore cycles in summands of the form Hy(Wy; Zr) for |T| = 3.
Note that the target of this d? differential is given by Ei2 = Ho(Dyo4q; Z2), which is all two
torsion.

If the origin of the d? map is a cycle in the summand Hy(Wr; Zr) = Zs3 for W = W (A3),
it must map via d? to zero, since the target is all 2-torsion and the source is 3-torsion.

If the origin of the d? map is a cycle in the summand Hy(Wy;Zy) for Wy = W(Bs),
Wr = W(H3) or Wr = W(l2(p)) x W(A;) it will map to zero, as the representing cycles
transfer identically to zero on the chain level by the proof of Lemma so we can apply
Proposition [2.5.39

Lemma covers the final cases where the d? originates at a cycle in the summand
Hl(WT;ZT) for WT = W(IQ(]?)) X W(Al) for 2 < p- O

2.5.48. Extension problems. Recall the isotropy spectral sequence for the Davis com-
plex associated to a group W, given in Figure |1l Then from the calculations of EZ ; for the
diagonal i + j = 2 in Section the diagonal ¢ 4+ j = 3 in this section, and since all fur-
ther differentials with target or source group on the blue diagonal are zero from the previous
subsection, the spectral sequence has the following E*° page.
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Where A is Ho(Doqq; Z2),

B is Hy(Dee;Z2) ® Hyo(Da,;Z3) & ( @ Zm(s,t))
m(s,t)>3,700

and C is H1(Dgy; L) ® Ho(D_ ooy, 522) © Ho(Dag; Z2) & (& Zo).
o o—o W(H3)CW
W(B3)CW
And the spectral sequence on this diagonal converges to Hs(W;Z), so we are left to consider

possible extensions on this diagonal. That is there is a filtration of Hs(W;Z)
Foy CF CFy, C Fy=H3(W;Z)

where Egy = Fy, ETS = F\/Fy, ESq = Fy/Fy and ESy = F3/F,. In our case we have Fy =0
and so E(f.’é = Ho(Dodd;Zg) = Fl.

PROPOSITION 2.5.49. We have that Fy = A = Hy(Doqa; Z2) splits off by an analogue of
the sign homomorphism for symmetric groups.

PRrOOF. Consider a homomorphism 1 from a Coxeter group W with generating set S to
the cyclic subgroup of order two generated by ¢ in S, which is isomorphic to W(A;). If two
generators of W, s1 and so, satisfy m(s1, s2) is odd then we require ¥ (s1) = 9(s2), whereas if
m(s1, s2) is even there is no requirement on . A summand of

A=F = Hy(Doat; Z2) = P 2o
70(DPodd)

is represented by a vertex of D(W). For the vertex t generating the subgroup W (A;), denote
the corresponding summand of A by Zs(t). We define the homomorphism 1 from W to W (A;)
to be zero on all but one of the connected components of D,44, namely the t component.
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bW = W(A)

o t if s and ¢ are in the same component of my(Dopyq)
s
e otherwise.

Then the map v induces a map v, which fits into the following diagram

Zo(t) > A Hy(W:Z) — Hy(W(A1); Z)
Lo

where H3(W (A1);Z) = Zs is computed by noting that the E°° page of the isotropy spectral

sequence for W (A7) has only one group on the blue diagonal: the Hy(Dyqq; Z2) component

corresponding to ¢t (Zs(t)). The inclusion map A < Hs(W;Z) comes from the fact that A is

at the top left of the diagonal of filtration quotients for W, and so is a subgroup of H3(W;Z).

The isomorphism gives us that Hs(W;Z) splits as

Hs(W;Z) = Zao(t) @ ker(y)
and so there are no extensions involving the Zy(t) summand of A. Repeating this argument
over all summands gives that there are no extensions involving A and so A = F} splits off in
Hs(W;Z), as required.
O

We therefore have the filtration
0CFy CF,CF3=H3W;Z)=F & Fy

and so F = F1 & Iy and F3 = I & Fy. It follows that By = B =R/I = F} and
Egy = C = F3/Fy = F3/Fj, so Iy fits into the following exact sequence

0 F F Fi/F ——~0
B )

0 y C 0

i.e. F} is an extension of C' by B.

LEMMA 2.5.50. There exist no non-trivial extensions between Ho(D .. ;Z2) in C and
B. * o—o

oven which is
* o—o

given by an I5(2p) U A; subdiagram present in Dy,. We compute the spectral sequence for
the Coxeter group V = W (I2(2p)) x W (A1) corresponding to this diagram, and note that by
Lemma, [2.3.16] the inclusion of the subgroup V into the group W induces a map of spectral

PROOF. A summand of Hy(D ; Z3) is represented by a vertex in D

even
*>—e
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sequences. Therefore if there is a trivial extension in the spectral sequence for V' corresponding
to the I5(2p) U Ay summand of Hy(D ; Z3), this extension will be trivial in the spectral

sequence for W. This is because the ?s.plitting of the extension sequence in F(V) will give a
splitting of the extension sequence in E(W), under the map of spectral sequences.

We consider first the case when p > 1 and then the case p = 1. The E*° page for the
Coxeter group V = W (I2(2p)) x W (A1), for p > 1 is given by

3 0

2] 0 Zy@Zy®7Zy 7

1l o0 0 Zo®To® Loy 7

0| z ? ? Zo 7
0 1 2 3 4

which is computed in Appendix [Bl We therefore have that H3(V;Z) = F5& Fy = Fi & (Zo &
Za ® Zy) where Fy is an extension of Zy by Zo @ Za & Zgp.

The third integral homology of V' = W (I3(2p)) x W (A1) can be computed via the Kiinneth
formula for groups, to be

Hy(W(I2(2p)) x W(A1);Z) = Zo® Lo ® Ly ® Ly D Loy ® Ly © Lo

We compute this in Appendix
Therefore we see that Fy = Zy @ Zy & Za @ Zsp and it follows that there is no non-trivial
extension between the Hy(D ; Z3) component of C' and B. For the case p =1, ie. V =

even
—e

W (Iz(p)) x W (A1) = W (A1) x W(A1) x W(A;1), we have the following E*° page:
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3 0

2 0 Zo®Zo®Zs ?

1 0 0 Lo ® Lo ® Ly 7

0 Z ? ? Lo ?
0 1 2 3 4

which is computed in Appendix

We therefore have that H3(V;Z) = Fy @& Fy = F, ® (Zo ® Za & Zs2) where F} is an extension
of Zo by Zo ® Zo @ Zso.

The third integral homology of V' = W (A1) x W(A;) x W(A;) is given by that of W (I2(2p)) x
W (A1) when p =1 and from the previous calculation is therefore:

H3(W(A1) X W(Al) X W(Al),Z) =79 D Lo DZo Dl DLy D Lo D Zo.

Therefore we see that Fé = Zo @B Zo ® Zo ® Zso, and it follows that there is no non-trivial
extension between the Hy(D ; Zo) component of C' and B. O

even
—a

LEMMA 2.5.51. There ezists a non-trivial extension between the Ho(Day; Za) component
in C and the Hy(Deo;Z2) component in B.

PrROOF. A summand of Ho(Dy,;Zs) is represented by a vertex of Dy,, which is given
by an A3 subdiagram present in Dyy. We compute the spectral sequence for the subgroup
V = W(A3) corresponding to this diagram. The E*° page for the Coxeter group V = W (A43)
is given by
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0 Z ? ? Zs ?

0 1 2 3 4

which is computed in Appendix [Bl We therefore have H3(V;Z) = F5 & Fy = F4 & Zy where
Fj is an extension of Zg by Zg @ Zs. Recall that V = W (As3) is the symmetric group Sy. The
third integral homology of V' = W(As) is H3(S4;Z) = Z12 @ Zo and the unique extension
which will obtain this result is the following:

0 =>ZoDZs — 7y D73y — Zo— 0

giving H3(V;7Z) = Zy & Zs & Zo = Z12 ® Zs. By Lemma [2.3.16| the inclusion of subgroup
V into group W gives a map of spectral sequences. Under this map the extension sequence
above is mapped as follows.

0 ——=Zo DLy ——> Ly DL —> Ly —>0

o

0 B F; C 0.
Therefore the extension in the V spectral sequence corresponding to the As summand of
Ho(Da,;Z2) is present in the spectral sequence for W. It follows that there exists a non
trivial extension from each summand of Hyo(Da,;Z2) to Ho(Dee; Z2). O

DEFINITION 2.5.52. For a Coxeter group W, let I = my(Des), J = mo(Da4,) and let the
connected component of a vertex {s,u} in my(Des) be denoted [{s,u}] and the connected
component of a vertex {s,t,u} in my(Da,) be denoted [{s,t,u}]. We define the extension
matriz Xy to be the I by J matrix with entries

X(i,5) =
(i) 0 otherwise.

{1 if i = [{s,u}] and j = [{s,t,u}]
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LEMMA 2.5.53. Given a Cozeter group W, the extension of Ho(Day;Za) by Ho(Dee; Z2)
in the spectral sequence is completely determined by the extension matriz Xy defined in Def-

inition [2.5.59.

PRrROOF. For two finite indexing sets I and J, the extensions of ®Zs by @Zy are classified
J I

by
EXt(EBZQ, @ZQ) = EXt(ZQ, Zg)
I J
Zo.

~b ~b
<P <P

Under this classification, an extension is given by a tuple of entries, either zero or 1, for each
pair (i,7) in I x J. The (i, j) entry is zero if the restriction to these summands in the extension
sequence is a trivial extension of Zg by Zo (Za @ Z2), and 1 if the extension is the non-trivial
extension of Zg by Zo (Z4). Letting the (i,j) entry in the tuple be X (i,7) gives an I x J
matrix X.

The extension of Hy(Da,; Za) by Ho(Des; Z2) is given by the following extension sequence

O E—— HQ(D..; ZQ) I Y —_— Ho(DAg; ZQ) —_— 0

70(Des) m0(Dag)
By Lemma we know that the restriction on the right to a Zs summand with index a
class of vertices [{s,t,u}] in mo(Da,) is the non-trivial extension by the Zy summand with
index given by the corresponding class of vertices [{s,u}] in 79(Des). Let I = my(Des) and
J = mp(Da,) then the matrix X is precisely Xy from Definition O

ExXAaMPLE 2.5.54. For example consider the Coxeter group defined by the following dia-
gram:

then the diagram D4, is given by
{s,t,u}  {v,w,x}
° °

and the diagram D,,e is given by
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{s,v}{s,w} {t,z}{u,x}

{sou) (orz}

{t, v} {t,wHu,w}

where the vertices corresponding to the two W (As) subgroups: {s,u} corresponding to {s,t, u}
and {v, z} corresponding to {v,w, x} are present at either end of De,. The extension sequence
takes the form

0 A B B/A

0 —_—> Ho(D..; Zz) —_— B —_— H()(DA3;Z2) —_— O

0 Zs B Lo & Lo 0
and we know from Lemma [2.5.51| that given the spectral sequence for the W (A3) subgroup
corresponding to the representative for either of the Zo components on the right, there is a
non-trivial extension of this Zy by the left Zs to get a Z4. The extension matrix is therefore

Xw=(1 1)

0

with the row corresponding to the component of my(Dss) represented by {s,u} = {v,x} and
the columns to the two components of my(Da,) represented by {s,t,u} and {v,w,z}. In
reality this can be realised as B = Zs @ Z4 with maps as follows.
0 ——=2Zo —> 1o DLy ——> LoD Ly —0
a+—— (0,2a)

(b,c) ——— (b+ ¢, b).
LEMMA 2.5.55. There exist no non-trivial extensions from the

O & Zo)
W (H3)CW
W(Bz)CW

component of C to B.

PrOOF. We recall that subdiagrams of the form Hs and Bs in Dy represent these sum-
mands of C. We compute the spectral sequence for the groups corresponding to these dia-
grams, and compare to the third homology of the corresponding group W (Hs) or W (Bs) as
computed using the De Concini - Salvetti resolution for finite Coxeter groups in [18]. Through
these comparisons we observe that there are no non-trivial extensions present, as in the proof
of Lemma These calculations are found in Appendix

O
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LEMMA 2.5.56. A class H1(D5);Zs) in C exists only when the spectral sequence is calcu-
lated for a Cozeter group W for which Dy has a subdiagram of the form Y LU Ay where Y is a
1-cycle in the Cozeter diagram Doqq. That is a class in Hy(DS,;Zs) is represented by a loop
containing only odd edges, along with a vertex disjoint from this loop, in Dy .

PROOF. Let the vertices of the cycle be given by {t1,...,t;} and the disjoint vertex be
given by s. Then the cycle given by {(t1,s),...(ts,s)} represents a cycle in Hy(D5,;Zs).
To show that all classes in Hy (D,D,; Z9) are represented by cycles of this form, suppose that
{(x1,91),...,(zp,yp)} represents a cycle. Without loss of generality, suppose 1 = x2. Then
there exists an edge between (x1,y1) and (z1,y2) in Dee. That is, m(y1,y2) must be odd.
Now either x1 = x3 or y2 = ys, suppose y2 = y3 then it follows that m(x1,x3) is odd. Then
the vertices have the following form in the Coxeter diagram

odd odd

o— o\—@
x1 €3 Y1 Y2

and so in the diagram D, we have

(z1,91) (z3,91)

(x1,92) (73,92)

and since this is a square, in the diagram DE}, it is filled in, and thus the cycle

{(z1,91), (z1,92), (x3,92), (x3,y1)} is a boundary. It follows that the sub-cycle

{(z1,11), (x1,y2), (x3,y2)} of {(x1,y1),...,(2p,yp)} can be replaced with the vertex
{(z3,91)}, i-e. in H1(D5,;Zs) the cycle {(x1,y1), ., (p, yp)} is equal to the cycle

{(x3,91), (x4,y4) ..., (xp,yp)}. Without loss of generality, we can now assume that x3 = x4
and we are back to the start of the analysis of the cycle. Therefore, by reiterating this
procedure we build a cycle equivalent, via boundaries, to {(x1,v1),...,(zk, yx)} and where
x1 = x; for all 4. This is exactly a subdiagram of the form Y LI A; in the Coxeter diagram
Dy, where Y is a loop in D,qq. O

COROLLARY 2.5.57. There exists a possible extension problem between the Hy(DS,;Zs)
component in C and B, only when the spectral sequence is calculated for a Coxeter group
W for which Dw has a subdiagram of the form Y Ll Ay where Y is a 1-cycle in the Coxeter
diagram Dyqq-

2.5.58. Proof of Theorem [Bl

THEOREM 2.5.59. Given a finite rank Cozeter group W such that Dy does not have a
subdiagram of the form Y U Ay, where Y is a loop in the Coxeter diagram D,qq, there is an
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isomorphism
H3(W;Z) = Ho(Doga; Z2) ® Ho(Day; Z3) & ( (t)EE?)# Zn(s.t)) ® Ho(D_ guen 3 Z2)
®( @  Zy)® (Ho(Day; Z2) O Ho(Dee; Z2))
W (H3)CW
W(B3)CW

where each diagram is as described in Definition and viewed as a simplicial complex.
In this equation, () denotes the non-trivial extension of Hy(Das; Z2) by Ho(Dee; Z2) given by
the extension matriz Xy defined in Definition [2.5.53.

If W is such that Dw has a subdiagram of the form Y U Ay where Y is a 1-cycle in the
Cozeter diagram Doqq, then there is an isomorphism modulo extensions

H3(W;Z) = Ho(Doga; Z2) ® Ho(Day; Z3) & ( (t)EE?)# Zan(s.1)) © Ho(D_ coep 3 Z2)
®( @& Zo)® (Ho(Day; Z2) O Ho(Des; Z2))
W (H3)CW
W (B3)CW

@Hl(DoDo7 Z2)7
where the unknown extensions involve the Hy(D5,; Zo) summand.

PRrROOF. The two cases, when Dy contains a diagram of the form Y LI A;, and when it
does not, are a direct result of Lemma and Corollary That is, if there is not
a subdiagram of type Y LU A; then the summand H;(D5);Zs) is zero, and so there are no
possible non-trivial extensions.

The other possible extension problems are solved in Lemmas [2.5.50} [2.5.51] and [2.5.55]
This gives that the only non-trivial extension is the non-trivial extension of Hy(D4,;Z2) by
Hy(Dee; Z3), which is given by the extension matrix Xy of Deﬁnitionby Lemma

The computation of the blue diagonal of the isotropy spectral sequence for the Davis
complex at E°°, alongside the solutions to these extension problems, gives the formula for
Hs(W;Z) as stated in the theorem. O




CHAPTER 3

Background: Artin groups

3.1. Definition and examples

Recall from Definition the definition of w(a, b; k):
length k

—~
m(a,b;k) = aba. ..

and let us refer to this as an alternating product relation of length k. Recall from Remark
the alternative presentation of a Coxeter group W with generating set S:

s)2=e s
W= <S‘ W(s,t;m(s,t()))—W(t,s;m(s,t)) st,tig >

Then the corresponding Artin group is given by forgetting the involution condition.

DEeFINITION 3.1.1. For every Coxeter group W there is a corresponding Artin group Aw
with presentation

Ay = (o, for s € S| Vs, t € S,m(0s,00,m(s,t)) = 7(or, 05;m(s,1))).

We note that the Coxeter diagram Dyy also contains all the information about the Artin group
presentation. Since this definition no longer implies that the generators are involutions, the
group includes formal inverses o, ! for each generator. Words in A are therefore strings of
‘letters’ for which the alphabet consists of o5 and o, ! for s in S.

EXAMPLE 3.1.2. The Artin group Ay corresponding to the Coxeter group W = §,, is the
braid group. We denote this B,,. The corresponding diagram Dy is

01 02 03 Op-2 Op—1

where we relabel o, to o; for ease of notation. From this diagram we see that there is no edge
between generators when the subscript differs by 2 or more, and so these generators commute.
When the subscript of two generators differs by 1 there is an unlabelled edge between them,
which means that they satisfy an alternating product relation of length 3 on both sides. The
presentation is therefore given by
Bn:<ai for s; € S| 9i9j = 95 V.]i—j|22>
0i0i410; = 0i4100i41 1 <i < (n—2)

95
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and this is the standard presentation for the braid group on n strands, with the generator o;
given pictorially as

1 1+1

Here we note that if two generators have subscripts that differ by at least 2 they will involve
disjoint strands, and so will commute. The relation o;0;110; = 0;410;0;41 follows from the

J

pictorial representation below

;

0i0i4+103 = 0i410404+1

We call the half twists relating to the generators o; positive twists and those relating to
generators o, ! negative twists.

ExaMpPLE 3.1.3. When all possible edges in the Coxeter diagram Dy, are present and
labelled with oo this corresponds to the Artin group Ay being the free group on | S| generators.
Recall an edge between two vertices s and ¢ being labelled with oo corresponds to m(s,t) = oo,
or when viewed under the Artin presentation, there is no alternating product relation between
os and o;. Therefore the group has presentation

Aw = (o, for s € S),
which is precisely the free group on |S| generators.

ExXAMPLE 3.1.4. When there are no edges in the Coxeter diagram Dy this corresponds
to the Artin group Ay being the free abelian group on |S| generators. Recall that no edge
between two vertices s and t corresponds to m(s,t) = 2, or when viewed under the Artin
presentation, there is an alternating product relation between o and o of length 2: o4 and
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o commute. Therefore the group has presentation
Aw = (o5 for s € S|os00 = 0105Vs #t € S),
which is precisely the free abelian group on |S| generators.

DEFINITION 3.1.5. When all of the edges in the Coxeter diagram are labelled with oo,
but not necessarily all possible edges are present (some m(s,t) may be equal to 2) then the
corresponding Artin group is called a right angled Artin group, or RAAG.

DEFINITION 3.1.6. When the Coxeter group W is finite, i.e. when its diagram Dy is a
disjoint union of diagrams from Proposition then the corresponding Artin group Aw
is called a finite type Artin group, or a spherical Artin group. Note that an Artin group itself
is never finite, as all generators have infinite order.

Much of the known theory of Artin groups is concentrated around RAAGs and finite type
Artin groups, though we do not restrict ourselves to either of these families in our results.
In general little is known about Artin groups. For instance the following properties hold for
finite type Artin groups [13]:

e there exists a finite model for the classifying space K (A, 1),
e Ay, is torsion free,

e the centre of Ay is Z,

e Ay has solvable word and conjugacy problem

and to this date these properties are not known for general Artin groups. For instance the word
problem requires an algorithm to determine if a word in the Artin group Ay, is equivalent
via the group relations to the identity, or equivalently the conjugacy problem requires an
algorithm to determine whether, given two words in Ay, one is a conjugate of the other. We
now consider the first point in detail.

3.2. The K(m,1) conjecture

DEeFINITION 3.2.1. Given a CW complex X and a discrete group G we say that X is
K(G,1), space if X is aspherical with fundamental group G. Such a space is a model for the
classifying space BG of the group G, from which one can construct a free resolution of Z over
ZG and hence calculate the (co)homology of G.

ExXAMPLE 3.2.2. We now look in detail at a K(B,,1) space for the braid group on n
strands. It is known that the space of unordered configurations of n points in the plane is
a classifying space for the braid group B,, (this was proved by Fox and Neuwirth [24]). An
ordered configuration can be viewed as n ordered points on the complex plane C, or one point
in C", such that no two of its co-ordinates are equal. The set in C™ consisting of points with
two equal co-ordinates:

Hi,j = {(:L'l, c. ,l’n) eCc" ’l‘z = {L‘j}
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is a codimension 1 subspace of C", or a complex hyperplane of C™. Therefore the space of
ordered configurations in C can be viewed as the following space:

M=c"\( |J H).
1]
Since we wish to consider unordered configurations, we take the quotient of M under the
action of the symmetric group S,, which permutes the coordinates.

Putting this all together gives that the classifying space for the braid group B,, is equivalent
to a hyperplane complement in C”, modulo the action of the symmetric group S,. We note
here that the symmetric group S, is the Coxeter group associated to the braid group B,,.

In general, one can associate a hyperplane complement to each Coxeter group W, such that
there is a free action of the Coxeter group W. When you consider this hyperplane complement
modulo this W action, the corresponding quotient has as its fundamental group the Artin
group Ap. In some known cases this quotient space is a K (A, 1), and this is conjectured
to be true for all Artin groups. In the following section we make this precise, following Davis
[17], notes by Paris [40] and the introduction to a paper on RAAGs by Charney [13].

DEFINITION 3.2.3 (see Davis [17, 6.1.1]). A linear reflection on a vector space V is a
linear transformation r : V' — V such that r has order two and the fixed subspace of r is a
hyperplane H, in V. We call a group generated by such linear reflections a reflection group.

PROPOSITION 3.2.4 (see Davis [17, 6.6.3]). If W is a finite group generated by a set of
linear reflections S on a finite dimensional vector space V' then (W, S) is a Coxeter system.

We can associate to such a group W a bilinear form B on V which encodes the information
of each generating reflection, see for example [13] or [I7, Chapter 6]. When the reflection
group is finite, B is positive definite and so defines an inner product on V. Identifying (V, B)
and (R™, -) identifies the reflection hyperplanes of W in V' with a finite hyperplane arrangement
in R™:

A = {H,|r is a reflection in W}.

It follows that every point in R™ with non-trivial stabiliser under the group action of W lies in
a hyperplane in 4. Complexifying gives an arrangement of complex hyperplanes in C" such
that W acts freely on the complement:

M(A) =c\( | cHy).
Hr.cA

Artin groups were first introduced by Brieskorn [9] as the fundamental groups of the quotient
M(A)/W and in the 1970s Deligne proved the following theorem [19].
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THEOREM 3.2.5 (Deligne’s Theorem, see Charney [13], 1.1]). For W a finite Cozeter group
and Ay the associated Artin group, M(A)/W is aspherical with fundamental group Ay, that
is M(A)/W is a K(Aw,1).

For arbitrary Artin groups, there is a well known conjecture called the K(m, 1) conjec-
ture, formulated by Arnol’d, Thom and Pham. This conjecture states than an analogue of
Deligne’s theorem holds for all Artin groups. The analogue of the hyperplane complement
was formulated by Vinberg, and is as follows.

DEFINITION 3.2.6 (see Davis [17, A.1.8]). A convez polyhedral cone in a finite vector space
V' is the intersection of a finite set of linear half-spaces in V.

DEFINITION 3.2.7 (see Paris [40]). Let V be a finite-dimensional real vector space and let
C be a closed convex polyhedral cone in V with non-empty interior denoted Cy. Define a wall
of Cy to be a hyperplane of V determined by a codimension 1 face of Cy. Let Hy,...H, be
the walls of Cy and let s; be a linear reflection which fixes H;. Denote W to be the subgroup
of GL(V') generated by S = {s1,...5,}.

DEFINITION 3.2.8. With notation as above, W and S describe a Vinberg system (W,.5),
if for all w in W\{1} the transformation of Cy under w is disjoint from Cy, i.e. wCyNCy = 0.

DEFINITION 3.2.9. Given a Vinberg system (W, .S) let
I_ = U ’wé().
weW
Then the interior I is called the Tits cone of the system.

The following theorem of Vinberg is a prominent result linking Coxeter groups and hy-
perplane arrangements.

THEOREM 3.2.10 (Vinberg, see Paris [40, 1.1]). With the above notation, let (W,S) be a
Vinberg system. Then the following are true:

(1) W is a Cozeter group with generating set S.

(2) I is a convex cone and I is non-empty.

(8) The Tits cone I is invariant under the action of W, and W acts properly and dis-
continuously on I.

(4) If x € I satisfies that the stabiliser of x is non-trivial, then there exists a reflection
rin W such that r(z) = x.

DEFINITION 3.2.11. For a Vinberg system (W, .S) we denote by R the set of reflections in
W, as before we set A = {H, |r € R}. Then from the previous theorem A is a hyperplane
arrangement in /. We set
M(A) = (I x D\(|J H x H).
HeA
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This agrees with our definition of M(A) when I = V, giving A finite. By the previous
theorem, W acts freely and properly discontinuously on M(A) and hence we can take the
quotient

N(A) = M(A)/W.

THEOREM 3.2.12 ( Van der Lek, see Paris [40, 1.2]). Let (W,S) be a Vinberg system
and N(A) be defined as above. Then the fundamental group of N'(A) is isomorphic to the
associated Artin group Ay .

This result led to the formulation of Deligne’s theorem as a conjecture in this set up:
CONJECTURE 3.2.13. The space N (Aw) is a K(Aw,1) space.

REMARK 3.2.14. It is worth noting here a reformulation of the conjecture in terms of a
finite dimensional CW-complex called the Salvetti complex, denoted by Sal(.A) and introduced
by Salvetti in [43], for a hyperplane arrangement A in a finite dimensional real vector space
V. The Salvetti complex is defined in terms of cosets, much like the Davis complex from
section [1.3] Paris extends this definition to any infinite hyperplane arrangement in a non-
empty convex cone I [40] and proves that Sal(.A) and M(A) have the same homotopy type.
The K (m,1) conjecture can therefore be restated as a conjecture about the Salvetti complex.

In general, Charney and Davis [14] proved the following.

THEOREM 3.2.15 (Charney and Davis [14]). For (W, S) a Vinberg system, the homotopy
type of the corresponding M(A) and N(A) depends only on the Cozeter diagram Dy of the
associated Coxeter group W.

The K (m, 1) conjecture has been proved for large classes of Artin groups [40]. For example
the conjecture holds for:

e Finite type Coxeter groups: this is Deligne’s Theorem [3.2.5]
e Large type Coxeter groups: when the Coxeter group has relations m(s,t) > 3 for all
s #t.

e Coxeter groups of dimension 2: when all T in § satisfy |T'| < 2.

e Coxeter groups of FC type: when S=8< := {T C S|m(s,t) # coVs,t € T}.
However the conjecture has not been proved to hold for general Artin groups to date. We
apply a reformulation of the K (7, 1) conjecture to our results, which involves the Artin monoid
AT discussed in the next chapter.



CHAPTER 4

Background: Artin monoids

This section follows Jean Michel A note on words in braid monoids [38] and Brieskorn
and Saito Artin-Gruppen und Cozeter-Gruppen [11].

4.1. Definition and examples

DEFINITION 4.1.1. The Artin monoid A?/E/ of an Artin group Ay associated to a Coxeter
group W is defined as the monoid with the same presentation as A:

A‘J,FV = (0, for s € S |Vos, 01, 7(0s, 00, m(s,t)) = 7(04, 05;m(s,1)))7T.
Words in AT are therefore strings of ‘letters’ for which the alphabet consists of o, for s in S.
REMARK 4.1.2. The group completion of A?/I/ is Ay . That is there is a monoid homomor-

phism A;FV to Aw (in this case given by inclusion), and Ay satisfies the universal property
that any monoid homomorphism from A?/{/ to a group G will factor uniquely through Ay .

EXAMPLE 4.1.3. The braid monoid B, is the monoid associated to the Artin group By,
the braid group, and Coxeter group .S, the symmetric group. The braid monoid consists of
words in the braid group made from the positive generators ¢;. In terms of the braid diagrams
these can be viewed as braids consisting of only positive twists.

DEFINITION 4.1.4. We define a submonoid M™ of an Artin monoid A" to be a parabolic
submonoid if the monoid M™ is generated by the set M+t N S. We call this generating set for
the monoid S);.

In this thesis, when referring to an submonoid of an Artin monoid, we will always mean
a parabolic submonoid.

4.2. Divisors in Artin monoids: general theory
Throughout this section let AT be an Artin monoid.

DEFINITION 4.2.1. Define the length function on an Artin monoid A' corresponding to a
Coxeter system (W, S)
(: AT >N
to be the function which maps a in A" to the minimum word length required to express a in
terms of the generators, as in the definition for Coxeter groups.

101
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REMARK 4.2.2. Note here that since there are no inverses in Artin monoids, multiplication
of two words does not lead to any cancellation, and therefore multiplication corresponds to
addition of lengths, i.e. £(ab) = ¢(a) + £(b).

DEFINITION 4.2.3. For words o and 3 in AT we say that a <r 3 if for some v in A"

we have = va, that is « appears on the right of some expression for 3. We say that [ is
right-divisible by «, or alternatively that « right divides .

We define <y, similarly, though we do not use this definition in this thesis.

PROPOSITION 4.2.4 (see Michel [38, Prop 2.4]). Artin monoids satisfy left and right can-
cellation, i.e. for a, b and c in AT,

ab=ac=b=c
ba=ca=0b=c.

We now consider work by Brieskorn and Saito in their 1972 paper Artin-Gruppen und
Cozeter-Gruppen [11]. They consider least common multiples and greatest common divisors
of sets of words in the Artin monoid. We are interested in the notion of least common multiple.

DEFINITION 4.2.5. Given a set of elements {g;};cs in an Artin monoid A", a common
multiple (3 is an element in A" which is right divisible by all g;. That is g; <g S for all g; in
the set. A least common multiple is a common multiple which right-divides all other common
multiples.

PROPOSITION 4.2.6 (Brieskorn and Saito [11}, 4.1] ). A finite set of elements in an Artin
monoid either has a least common multiple or no common multiple at all.

LEMMA 4.2.7 (Brieskorn and Saito [11]). The letters arising in a least common multiple of
a set of words in an Artin monoid are only those letters which appear in the words themselves.

DEFINITION 4.2.8. Let E be a set of words in the Artin monoid A*. Denote the least
common multiple (if it exists) of E by A(E). For o and 3 two words in A™ denote the least
common multiple of « and § (if it exists) by A(a, §).

DEFINITION 4.2.9. Consider a submonoid M ™ of an Artin monoid A™. Denote the gener-
ating set for the Coxeter group associated to the monoid by S and to the submonoid by Sjy.
Given a word « in AT we define two end sets for the word.

EndGeny (o) = {os|s € Sy,05 <pa}
EndMony (o) = {feM|B=<ra}
REMARK 4.2.10. EndGenjs(«) is exactly the letters og for s in Sjs that the word o can
end with, and EndMon () is exactly the words in M that the word « can end with. Note

that EndGenjs(a) is a subset of EndMonys(a), consisting of words that have length 1 and
that if EndMonys(«) = () then this implies that « has no right-divisors in M.
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4.3. Divisors in Artin monoids: theory for proof

Much of the proof in Chapter []is concerned with algebraic manipulation of words in the
Artin monoid. Here we introduce some technical definitions and lemmas used in the proof.
We build up a theory of monoid cosets in the case of Artin monoids, noting that this is very
particular to Artin monoids and many of these techniques will not work with general monoids.
The theory developed in this section is new unless cited.

LEMMA 4.3.1. Given o in A*, and M* a submonoid of A", the set EndMonp(a) has
a least common multiple A(EndMony(a)) = B which lies in the submonoid M™. That is
there exists 3 in M and v in AT such that o = v, and if B in M+ and v in A" satisfy
a =~ it follows that ' <r 3.

ProoOF. From Proposition we know that if a common multiple exists, then
A(EndMonys(a)) exists. « itself is a common multiple of all elements in EndMon (), by
definition of EndMonps(«). Furthermore Lemma notes that only letters appearing in
EndMonys(a) will appear in A(EndMonys(«)). By definition, these are letters in M ™ and
so A(EndMonys(«)) lies in M*. The second part of the lemma applies the definition of the
least common multiple. O

REMARK 4.3.2. For a word o in A" let the least common multiple of EndMonys(a) be
B. We write @ with respect to M+ for the word @ in A" such that o = @f. It will always be
clear in the text for which submonoid M T we are taking the reduction with respect to.

DEFINITION 4.3.3. For A an Artin monoid and M a submonoid, let AT (M) be the
following set
AT(M) = {@ with respect to MT | a € AT},
That is, AT (M) is the set of words in AT which do not end in any word from M.

LEMMA 4.3.4. For all o in AT and all B in M+, @ = of8 where the reduction is taken
with respect to M.

PROOF. Let @ = 7, so a = 7 for some n in M*, and EndMony(vy) = 0 i.e. v has
no right divisors in M*. Then aff = ynf and since  and 3 are both in M, it follows
that ns € EndMony(af). If nB is the least common multiple of EndMony(af) then
it follows that a3 = v = @ so we are done. Therefore suppose that 13 is not the least
common multiple of EndMony;(af), and note that ng will be a right divisor of the actual
least common multiple. Then there exists some ¢ in M of length at least 1 such that (n3
is the least common multiple of EndMonys(a3). Tt follows that there exists a v/ = a8 with
EndMony (7)) = 0 and af = 7/¢{nB. But af = ynB and it follows from cancellation that
v = +/¢. Since ¢ is in Mt with length at least 1 it follows that ( € EndMony;(y) which
contradicts EndMonps(y) = (. Therefore 0/ is the least common multiple of EndMonps(a/3)
and it follows that af = v = @. O



4.3. DIVISORS IN ARTIN MONOIDS: THEORY FOR PROOF 104

DEFINITION 4.3.5. Consider now the relation ~ on A" given by
ap ~ay <= o181 = af for some B; and By in M T

where M ™ is a submonoid of M. Again, if we are using this relation it will be made clear
which submonoid M ™ is being considered. We have that ~ is symmetric and reflexive. Let
~ be the transitive closure of ~. That is, oy ~ aw if there is a chain of elements in A™:

Al ~ T ~YTQ~ .Y TE~ Q9

for some k. Denote the equivalence class of a in AT under the relation ~ with respect to the
submonoid M as [a]yy.

LEMMA 4.3.6. The equivalence classes under ~ with respect to the submonoid M™ are in
one to one correspondence with the set A* (M), that is for all oy and ag in A*:

1]y =[]y = a1 =a3

PROOF. (=) If a7 = a3 = v with respect to M™, then a1 ~ v ~ a3 so it follows
a1 ~ ag. We need to show that if oy = a9 then @7 = @3. Since oy = a9 there is a chain
Q) ~ Ty~ Ty~ ...~ T~ (o, so if we show that 77 = ¢ whenever n ~ ¢ for  and ¢ in At it
will follow that @y =71 =79 = ... = T = @a. Since n ~ ( it follows that for some S and
B2 in M, nBy = (P2. From Lemma we know that 7 = nB; and similarly ¢ = (/32 so it
follows

which completes the proof. O

PROPOSITION 4.3.7. For M™ a submonoid of AT, AT = AT (M) x M™ as sets, via the
bijection
p: AT — AT(M)x MT
a +— (a,f) where a =ap

and this decomposition respects the right action of M+ on A™T.

PROOF. To show p is surjective: consider (v,3) € AT (M) x M™*. Due to Lemma [4.3.4]
for any 3 € M* we have a3 = @. Therefore 73 satisfies p(v8) = (v, 8) since 78 =7 = v (we
have v € A1 (M) so EndMon,(y) = 0). To show injectivity, suppose p(a1) = p(az), that is
(a1, f1) = (az, B2). This translates to a1 = @181 = @zf2 = g, therefore p is injective. Under
this decomposition, the action of m in M+ satisfies p(a.-m) = (@, 8-m) where o = af3, again
due to Lemma Therefore the right action of M+ under this decomposition acts trivially
on the first factor and as right multiplication on the second. O

PROPOSITION 4.3.8 (see Michel [38, 1.5]). If generators s andt in Sys are in EndGen ()
for some o in AT then A(s,t) is in EndMon(a).
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LEMMA 4.3.9. Consider F a subset of EndMonys(a) for some submonoid M+ of AT and
some a in AT. Then A(F) is in EndMony ().

PROOF. Since F' is a subset of EndMonjs(a), which has a least common multiple, then
certainly A(F') exists. The element A(F') divides all other common multiples of F. Since
A(EndMonps(a)) is a common multiple for EndMonjs(«), it is certainly a common multiple
for F. Therefore A(F) <gr A(EndMonys(«)) and it follows that A(F) is in EndMonps(«).

U

DEFINITION 4.3.10. Words « and (8 in an Artin monoid are defined to letterwise commute
if each letter in the word o commutes with every letter in the word (, and the set of letters
that « contains is disjoint from the set of letters that 5 contains.

LEMMA 4.3.11. If B and 7 are in EndMony(«) and 5 and v letterwise commute, it
follows that:

* A(B7) =By =P
o A(B,7) is in EndMonys(«)

PROOF. Since g and 7 letterwise commute, they contain distinct generators. The relations
in any Artin monoid have the same generators on both sides of the equality, therefore every
letter in the words 5 and v must appear in A(8,). If both 8 and v have length 1, say 5 = o
and v = 7 for generators ¢ and 7 then since the words letterwise commute it follows that o
commutes with 7. Therefore since o7 = 7o and both generators must appear in A(8,7) it
follows that

A(B,y) =0T =T0 =py=7pP
as required. Similarly, if § = o1...0% has length k, and v = 7 has length 1 then since the
words contain distinct generators it follows:

AB,7)=A(0y...0%,7)=(01...0k)T =7(01...0%) = BT = T.
Suppose now that § = o1 ...0; has length k and v = 71 ... 7; has length [. It is certainly true
that 8 <r Bv and v < $7. We must show that if z in A" is a common multiple of 3 and ~
then Sy = ~( is in EndMonys(z). Since = is a common multiple it follows that

r=yB=yoy...0k T=2zYy=2T1...T

for some y and z in AT, and since both 8 and 7; are in EndMony;(z) we have from Lemma

that A(B, ;) = Br; = mf is in EndMonys(z). Therefore since x = yf3, by cancellation

of 3, 7 is in EndMony;(y) and so y = y17; for some y; in A*. The previous equation becomes
T =17 = yﬁ = lelﬁ = ylﬁTl T =2X1Tp =27 =2T1--.T]

for some x1 in A*. By cancellation of 7; we have that z1 = 318 and x1 = 271 ... 7_1. Therefore
x1 satisfies both 8 and 7,1 are in EndMony;(x1) and, repeating the same argument, we
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conclude that 7;_1 is in EndMon(y;) and so y; = yo7;_1 for some ys in AT. The previous
equation becomes

T =2oT1T = YB = Y118 = Y2 8TI—1T;

for some x5 in AT. Continuing in this fashion we arrive at

r=xT1.. 1=yl =ym...1B =yyp

for some x; in AT, and so vy = v is in EndMonp(z) as required. This shows that A(3,v) =
By =18

Invoking Lemma with F' = {8,7} we have A(F) = A(8,7) = By = 70 is in
EndMony (). O

LEMMA 4.3.12. If words o, a and b in AT, are such that b <g aa and a and b letterwise
commute, then it follows that b <g .

PROOF. An equivalent way of writing m <gr n for m, n in A" is m € EndMona(n)
where the end set is taken with respect to the full monoid A™. Since a and b are both in
EndMona(aa) it follows that A(a,b) is in EndMona(aa), from Lemma[d.3.9] Since a and b
letterwise commute, A(a, b) = ab = ba. Therefore ba is in EndMon(aa), and by cancellation
of a it follows that b is in EndMon 4(«) as required. O

4.4. Relation to the K(m,1) conjecture

In 2002 Dobrinskaya published a paper relating the classifying space of the Artin monoid
BAIJ/FV to the K(m, 1) conjecture. This was later translated into English as Configuration
Spaces of Labelled Particles and Finite Eilenberg - MacLane Complezes [20]. The main result
of the paper was the following:

THEOREM 4.4.1 (Dobrinskaya [20, Theorem 6.3]). Given an Artin group Aw and its
associated monoid A, the K(m,1) conjecture holds if and only if the natural map between
their classifying spaces, BA;FV — BAyw, is a homotopy equivalence.

She proved this via the introduction of a finite subset of the Artin monoid A}F c AT
and a notion of classifying space BA? for this subset, such that the map BA;{ — BAT
was a homotopy equivalence. She then proved that BAT was homotopy equivalent to the
hyperplane complement M(.A) defined in Definition Putting this together gave that
the classifying space for the monoid BAT was homotopy equivalent to M(A) [20, Theorem
6.2], which completes the proof.

4.5. Semi-simplicial constructions with monoids

4.5.1. Semi-simplicial background.
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DEFINITION 4.5.2 (see Ebert and Randal-Williams [21], 1.1]). Let A denote the category
which has as its objects the non-empty finite ordered sets [n] = {0,1,...,n}, and as its
morphisms monotone functions. These functions are generated by the basic functions:

D':[n] — [n+1lfor0<i<n
{0,1,....,n} — {0,1,...%,...,n+1}
St:n4+1 — [nlfor0<i<n

—

{0,1,...,n+1} {0,1,...,i,4,...n}

The opposite category AP is known as the simplicial category. We denote the opposite of the
maps D’ by 0; and the opposite of the maps S* by s;. We call these the face maps and the
degeneracy maps respectively.

Let Aju; C A be the subcategory of A which has the same objects but only the injective
op
nj
the semi-simplicial category and its morphisms are therefore generated by the face maps 0;.

monotone maps as morphisms, generated by the D;. The opposite category A" . is known as

DEFINITION 4.5.3 (see Ebert and Randal-Williams [21, 1.1]). A simplicial object in a
category C is a covariant functor X, : A? — C. A semi-simplicial object is a functor X, :
A7V — C. We denote Xo([n]) by Xp. A (semi-)simplicial map f : Xe — Ye is a natural
transformation of functors, and in particular has components f, : X,, — Y,. Simplicial
objects in C form a category denoted sC, and semi-simplicial objects a category denoted ssC.

When C is equal to Set the (semi-)simplicial object is called a (semi-)simplicial set.

REMARK 4.5.4. A semi-simplicial object in a category C is equivalent to the following
data:

(a) An object X, in C, for p >0
(b) Morphisms Gf : Xp =& Xp—1 for 0 < i < pandall p>0inC called face maps which
satisfy the following simplicial identities

ool = 0P o if i < j.

DEFINITION 4.5.5 ([see Ebert and Randal-Williams [21] 1.3]). An augmented semi - sim-
plicial object in C is a triple (Xo, X_1, €s) such that X, is a semi-simplicial object in C, X_1
is an object of C and ¢, is a family of morphisms such that €, : X;,, = X_1 and €)1 0 0; = ¢,
forallp>1and 0 <i<p.

EXAMPLE 4.5.6 (see Ebert and Randal-Williams [21), 1.2]). The standard n-simplex has
two equivalent manifestations: as a simplicial object in Set and as an object in Top. When
viewed as a simplicial set the standard n-simplex is denoted A7 and is defined via the functor
Al = A7([m]) = homa([m],[n]) for all [m] in A°?. When viewed as an object in Top the
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standard n-simplex is denoted |A"| and defined to be

n
|A”] = {(to, cootn) ERTTHY "t =1 and t; > OW}.
i=0
One can associate to a morphism ¢ : [m] — [n] in A a continuous map
¢t |A"] = AT

(to,---»tn) + (S0,...,5m) where s; = Z t;.
o(i)=j
That is, morphisms send the jth vertex of the simplex |A”| to the ¢(j)th vertex of |A™| and
extend linearly. Under this viewpoint the map D? sends |A"| to the ith face of [A"*!| and
the map S collapses together the ith and (i + 1)st vertices of |A"*1| to give a map to |A™|.

Applying several face maps in a row can be denoted as a tuple (0}~ 1,8522 0 "
where 8?1 ~!is the first face map to be applied, followed by 8% _2, etc. For ease of notation
we assume that the second map in the tuple maps from the target of the first map, and the
third from the target of the second map etc., and so we dispense with superscripts, writing

the tuple as (0;,, 0y, - -, 0iy)-

LEMMA 4.5.7. With the above notation, the tuple of face maps can be organised such that
ij+1 > ’ij fO’/“ all]

PROOF. Suppose i;41 < i; in the tuple (0;;, 04, ..., 0;,).. The simplicial identities then
tell us that applying 0;; before 9;,,, is the same as applying 0;,,, before 9;, 1, i.e.

Jj+1

0i;1, 05, = i, 10,

Li+1

j+1
it since 41 < 4j
Therefore (81‘1,({91'2 .. &J,@JH, ce ,8%) = (81‘1,(91'2 e ,Bij+1,6i]._1, ceey 8%) Since ij+1 < ij,
it follows that i; — 1 > 4;41. Relabelling i; := 4,41 and ¢j41 :=4; — 1 gives

(01,045 -+ 5045, 05515+ -

E?:l i; by one, and therefore iteration of this process must terminate. If we apply this

0;,,) such that i;41 > i;. Applying this process reduces the sum

process enough times, we get ;41 > i; for all j. O

DEFINITION 4.5.8 (see Ebert and Randal-Williams [21], 1.2]). The geometric realisation
of a semi-simplicial space is denoted by || X,|| and defined to be

IXall := [T X0 > 17|/ ~

n>0
where ~ is generated by (z,t) ~ (y,u) whenever 0;(z) = y and D*(u) = t.

DEFINITION 4.5.9. Given a semi-simplicial map f, : Xo — Y, there is an induced map
I fell : [[Xe|| — ||Ye|| which we call the geometric realisation of the semi-simplicial map fe.
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DEFINITION 4.5.10 (see Ebert and Randal-Williams [21, 1.4]). A bi-semi-simplicial object
in a category C is a functor Xee : (Ainj X Ajpj)®? — C. We write X, ; = Xeo([p], [q]). We
write the image of the standard face maps in each simplicial direction (9; x id) and (id x 0;),
as 8@. and 8.7]'. We note that (8l X 8]) = (81',. o 8.7]‘) = (8.7j o 8@.) : Xp7q — X(pfl),(qfl)
and we denote this map J; ;. When C is equal to Set the bi-semi-simplicial object is called a
bi-semi-simplicial set.

REMARK 4.5.11. A bi-semi-simplicial set can be viewed as a semi-simplicial object in
ssSet in two ways:
1. Xeg:[pl = (Xe:[q] = Xp4) with face maps 0; .
2. Xpe gl = (Xe:[p] = X,q) with face maps O, ;.

DEFINITION 4.5.12 (see Ebert and Randal-Williams [21], 1.2]). Given a bi-semi-simplicial
set Xo o we define its geometric realisation to be

1Xeall = TT Xpq x 187] x |A%]/ ~
p,q20
where ~ is generated by the (z,t1,t2) ~ (y,u1,u2) whenever (9;;)(z) =y, D'(u1) = t; and
DJ(ug) = ty. This is equivalent to taking the geometric realisation of the semi-simplicial set
first in the p direction, and then the g, or the ¢ followed by the p. This is due to the following
homeomorphisms [21], 1.9,1.10]

[ Xeooll = (1 Xeg : [p] = (| Xe: [a] = Xpgll[l = [[Xpe = [a] = [[Xe: [p] = Xpg

4.5.13. Semi-simplicial constructions using monoids and submonoids. The fol-
lowing description of the geometric bar construction and related definitions loosely follows
Chapter 7 of May’s Classifying spaces and fibrations [36].

DEFINITION 4.5.14. Let M be a monoid and X and Y be spaces with a left and right
action of M respectively. Then the bar construction denoted B(Y, M, X) is the geometric
realisation of the semi-simplicial space Bo(Y, M, X) given by

Ba(Y,M,X) =Y x M" x X.

Elements in B, (Y, M, X) are written as y[g1,...,gn]z for y in Y, g; in M for 1 <i < n and
xz in X. Face maps are given by

Y9192, - - -, gnlx ifi=0
81‘(1/[917 e 7gn]$) = y[gl,...,gigiﬂ, .. ,gn]x f1<i<n-1
y[gl7"'7gn—1]gnx if 1 =n.

DEFINITION 4.5.15. Consider the bar construction B(x, M,Y’) for Y space with an action
of the monoid M on the left, and * is a point, on which M acts trivially. This is the geometric
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realisation of the semi-simplicial set Be(*, M,Y") given by

Bj(, M,Y) =% x MJ x Y.

Elements are written as [mq,...,m;ly for m; in M for 1 <i < j and y in Y. Face maps are
given by
[ma,...,mjly ifi=0
Oi(Ima,...,m4ly) = < [ma,...,mimigr, ... ,omyly  if1<i<j—1
[ml, ey mj,l]mjy if i = ]

We call the associated bar construction the homotopy quotient of Y over M and denote it
B(x,M,Y)= M\Y. When we have a monoid M acting on a space Y on the right we define
the homotopy quotient to be B(Y, M,*) =Y/ M.

EXAMPLE 4.5.16. Consider the bar construction B(x, N, M) for N a submonoid of M
acting on M on the left, by left multiplication, and * a point, on which N acts trivially. Then
the homotopy quotient of M over N is B(x, N, M) = N \\ M. This is the geometric realisation
of the semi-simplicial set B (%, N, M) given by

Bj(x, N, M) =% x N7 x M.

Elements are written as [nq,...,n;|m for n; in N for 1 <i < j and m in M. Face maps are
given by
[n2,...,nlm iti=0
82‘([??,1,...,??,]']771): [nl,...,anl,...,nj]m 1f1§’6§]—1
[nl,...,nj_l]njm le:j

We can build a similar homotopy quotient for a submonoid N acting on M on the right
by right multiplication. Then the associated homotopy quotient is the geometric realisation

B(M,N,*)=M J/ N.

LEMMA 4.5.17. The homotopy quotient of a group G or monoid M under a point x is
a model for the classifying space of the group or monoid, i.e. BG ~ G \\ x ~ x | G and
BM ~ M\ x~x/ M.

PROOF. Writing down the simplices and face maps for the homotopy quotients G \\ x and
G /| * gives exactly the simplices and face maps for the standard resolution or bar resolution
of G, which is a model for BG (see e.g. [12]). This holds similarly for the monoid M. In fact
in [36] this is how the classifying spaces BG and BM are defined. O

LEMMA 4.5.18. For a monoid M, M\ M ~ x.
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PRrOOF. We introduce an augmentation of the semi-simplicial space, as in Definition [4.5.5
by setting (M \\ M)_; = % and the augmentation map €, to be the trivial map to the point
at each level. By [21, Lemma 1.12] the map ||es|| : M \\ M — = is a homotopy equivalence if
there exist maps hpyq : (M \ M), = (M \ M),+1 such that:

(1) Optrhp1 = Idar\m),
(2) Bihper = hyd; for 0 <i < p+1
(3) eoho = Idnr\ary_,
Letting
hprr: (MN\ M), — (M\ M)py
[mi,...,mplm — [mi,...,mp,mle

these three hypotheses are easily verified and so ||€e|| : M\ M — * is a homotopy equivalence.
g

LEMMA 4.5.19. Let N be a monoid and S be a set such that N acts on S on the right.
Suppose S can be decomposed as S = X XY and, under this decomposition, the action of N
restricts to a right action on the Y component and trivial action on the X component. Then
the homotopy quotient satisfies

SIN=Z(XxY)/N~Xx((Y)N)
where the homotopy equivalence is given by the geometric realisation of the levelwise map on
the bar construction
B,((X xY),N,*) — X x Bp(Y,N,x)
(‘Tay)[nlw"an}’)] = (xvy[nlﬂ"'vnp])

forxe X, yeY and n; € N for all .

PROOF. The homotopy quotient S / N is the geometric realisation of the simplicial set
B, (S, N, *) with the set of j-simplices given by

B;(S,N,*) =S x N’

and face maps given by Definition [4.5.15] the first face map 01 encompassing the right action
of N on S. Under the decomposition S =2 X x Y the set of j-simplices is given by

Bi(S,N,*) = (X xY) x NV 2 X x (Y x NY)

where the second isomorphism highlights that the action of N on S can be restricted to a
right action on Y, since the action is trivial on the X component. Note that the second factor
is precisely the set of j-simplices in B;(Y, N, ), and since the face maps act trivially on the X
factor, the face maps in B;(S, N, x) induce face maps in B;(Y, N, *) under the decomposition.
The proof is concluded by taking the geometric realisation of Be(S, N, *) and the geometric
realisation of X X Be(Y, N, ), noting that | X x Be(Y,N,*)| >~ X X ||Be(Y, N, )| O
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Given an Artin monoid A" and a parabolic submonoid M™, recall from the previous
section that AT(M) is the set of words in A" which do not end in words in M and there is
a decomposition as sets (Proposition [4.3.7), A* = AT(M) x M™*. This decomposition maps
a in A" to (@, 8) where o = @ (as defined in Remark and the right action of M on
AT descends to a trivial action on AT (M) and a right action on M.

PROPOSITION 4.5.20. With notation as above, the map
AT Mt — AT (M)
which is defined levelwise on the bar construction Be(AT, M™ %) by

By(A*, M*,%) — A*(M)

ajmy,...,my| — @
18 a homotopy equivalence.

PROOF. From Proposition [{.3.7 A* & A*(M) x M ™ and this decomposition respects the
right action of M+ on A*. Then
AT Mt = (AT(M)x M™) ) M+
~ AT (M) x (MT ) M)
~ AT(M) x
— AT()

*

~—

where the first homotopy equivalence uses Lemma|4.5.19/and the second homotopy equivalence
uses Lemma [£.5.18] The levelwise map given by these two lemmas is precisely the map in the
statement. O

PROPOSITION 4.5.21. Let AT be a monoid and M™ be a submonoid. Consider two maps
fandg: AT\ At — AT\ AT which are equivariant with respect to the action of M™ on the
right of AT\ A*. Since AT\ AT ~ x it follows that f and g are homotopic. We show that

there exists an M equivariant homotopy between the two maps.

PROOF. Let the k-cell of AT \\ AT corresponding to geometric realisation of the k-simplex
[p1,...,pr]a of Br(x, AT, AT) (as described in be denoted by the tuple (p1,...,pk, a),
with p; and a in A™. There is a right action of A" on the k-cells given by (p1,...,pk,a) -t =
(p1,...,pk,ap). Define the set of elementary k-cells to be those with tuple (p1,...,px,e€)
where e is the identity element in the monoid, and denote this cell D(py,...,pr). Then
every k-cell is uniquely determined by an elementary k-cell and an element a in AT, since
(p1,---Pr,a) = D(p1,...,pr) - a. Denote the set of k-cells in AT\ AT as (AT \\ AT)g. The
isomorphism of gives that AT = AT (M) x M™, let a = am under this decomposition.
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Then we get the following description for k-cells

(AT\AT)= || Dpn....;)x AT = || Dlpi,...,pe) x (AT (M) x MY).
(P1,-+Pk) (P1,---Pk)
(pl, ey Py a) — (D(pl, . ,pk), a) — (D(pl, ... ,pk), (d,m))

We build the equivariant homotopy first for 0-cells in AT\ A" and then inductively, showing if
we have built an equivariant homotopy on the (k — 1)-skeleton we can extend it to the k-cells.
Let fr be the restriction of the map f to the k-cells of AT\ A" and similarly for g. Then we
aim to define an equivariant homotopy between fy and go. (AT\A")p = (AT (M)x M) under
the above decomposition. Consider fo(a@) and go(a) in AT \\ AT for some @ in AT (M). Then
since AT \\ AT ~ x by it follows that there exists a path between fo(@) and go(@): call
this ho(a@, t) for t € [0,1]. Extend this homotopy to all 0-cells by letting ho(am,t) = ho(@,t)-m
for all m in M*. Then ho(am,0) = ho(a,0) -m = fo(a@) - m = fo(awm) and similarly
ho(@m,1) = ho(@,1) - m = go(@) - m = go(am), since fo and gy are M+ equivariant. The
homotopy ho(z,t) is M equivariant, since ho(x,t) - u = ho(zm,t) - p = ho(Z,t) - mu =
ho(Zmy, t) = ho(zu,t) when the decomposition of z is given by x = zm for some 7 in AT (M)
and m in M.

We now assume that we have built the equivariant homotopy hi_1(z,t) on the (k —
1)-skeleton and show that we extend it to the k-cells. The homotopy hjp_1(z,t) satisfies
hi—1(x,0) = fr—1(x) and hg_1(x,1) = gr—_1(z). Consider the k-cell D(py,...,px) - @ for some
@ in AT(M). Then its boundary consists of (k — 1)-cells and it follows that hj_; defines a
homotopy

O(D(p1,-pp) @) x T > AF\ A*

and the maps fi and g also define maps

fo: (D(pr,-..op)) -@) x {0} — AT\ AT
gkt (D(prs-.op)) @) x {1} — AT\ AT,

The union of these three maps gives a map from the boundary of (D(p1,...,px) - @) x I to
AT\ AT, but this boundary is a k-sphere and so, since A" \\ A" is contractible the k-sphere
bounds a (k+1)-disk. We can compatibly extend the map over this disk to create the required
homotopy

hy : (D(p1,...,pk) 'a) X I—>A+\\A+

which agrees on the boundary with the three maps above. Now define hy on any k-cell
D(pi,...,pk) - am by letting hg(x - m,t) = hg(z,t) - m for x in D(p1,...,pg) - @ Then hy is
M equivariant by construction, and satisfies hy(x,0) = fi and hg(z,1) = gx by construction
and the fact that both fj, and g; are M ™ equivariant. O

DEFINITION 4.5.22. Given a monoid M and two submonoids N; and Ny we can define
the double homotopy quotient N1 \\ M // N2 to be the realisation of the bi-semi-simplicial
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set given by taking two simplicial directions relating to bar constructions Be(*, N1, M) and

Be(M, No, x). The p, q level of the associated bi-semi-simplicial set Xqe¢ has simplices
Xpqg=NVx M x NJj

and face maps inherited from B, (*, N1, M) in the p direction (0, o) and Be(M, Na, %) in the ¢

direction (Js 4). An element in the p, q level is given by [n1,...nplm[ny, ..., ny] with n; in Ny

and n; in Ng for 1 <i<pand1<j<qg. Wenote that the face maps on the left and right
commute, since the only maps which act on the same coordinates are 9, in the p direction
and 0, 1 in the g direction and these commute as follows:

Ope(De([n1,...nplm[nt,...,n7])) = Ope(n,...nplmni[ny, ... ngl)
= [n1,...,np1|nymny[ny, ..., 0]

= 0,1 (Ope([n1,...np)m[nY, ... ,np])).



CHAPTER 5

Background: Homological stability

5.1. Definition and examples
DEFINITION 5.1.1. A family of groups or monoids
Gi—-Gy— =Gy — -
is said to satisfy homological stability if the induced maps on homology
H;(Gp) — Hi(Gn+1)
are isomorphisms for n sufficiently large compared to <.

Homological stability has been proved in a variety of cases e.g. for the symmetric groups,
braid groups, general linear groups and mapping class groups of surfaces. We will now focus
on some of these examples in detail.

ExaMpPLE 5.1.2. The sequence of symmetric groups S, satisfies homological stability, as
first proved by Nakaoka [39]. There is a sequence of groups and inclusions:

Si =8 == 85, =

where the inclusion S, < S,4+1 is given by extending a permutation of n elements to a
permutation of (n + 1) elements by fixing the last element. Then homological stability:

H;i(Sn) — Hi(Sn11)
holds in the range 2i < n.

ExXAMPLE 5.1.3. For the braid group on n strands, B,,, we have a sequence of groups:
Bl‘—>32‘—>‘—>3n‘—>

where the inclusion B,, < B,,41 is given by adding a strand in the (n+1)st position which does
not entangle with the first n strands. The sequence of braid groups B,, satisfies homological
stability, as first proved by Arnol’d and published by Brieskorn [10]. For this sequence we
have:

H;(B,) — H;(Bn11)
holds in the range 2i < n.
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5.2. Homological stability for Coxeter groups

This section follows work of Hepworth [31], which inspired the project which comprises
the next chapter of this thesis.

Hepworth proves homological stability for families of Coxeter groups for which the se-
quence of groups and inclusions is constructed as follows. The first group in the sequence, Wy
is given by any Coxeter diagram Dyy,, and a vertex of this diagram, i.e. an s; in S, is chosen:

S1

the next group in the sequence, W is built by adding a generator ss such that m(sy,s2) =3
and sy commutes with all other generators of W7, i.e. the Coxeter diagram has the form

51 52

Since the diagram Dy, is a subdiagram of Dyy, it follows that W; is a subgroup of W>. We
continue in this sense, at each stage progressing from W; to W;41 by adding a generator s;41
satisfying m(s;, si+1) = 3 and s;4+1 commutes with all other generators of W;. At each stage
the Coxeter diagram Dyy, is a full subdiagram of Dyy,,, and hence W; is a subgroup W1, by
Proposition [1.2.5 Therefore the sequence {W,,} has the following form:

Wi Wa W
We note here that the Coxeter diagram Dy, has the diagram A, as a subdiagram, and so
the finite Coxeter group W (A,,) is a subgroup of W,,. Recall that W (A,,) corresponds to the
symmetric group Sp41. Therefore each group in the sequence has a symmetric group as a
subgroup, and the ‘dimension’; or the number of generators, in the symmetric group increases
as one moves up the sequence. Hepworth’s result is as follows:

THEOREM 5.2.1 (Hepworth [31l, Main Theorem|). The above sequence of groups and in-
clusions
Wi—=Wy = o Wy
satisfies homological stability, that is the induced map on homology
H,.(BW,_1) = H.(BW,)
is an isomorphism for 2x < n. Here homology is taken with arbitrary constant coefficients.

Three of the families of finite Coxeter groups from Theorem [1.1.12] satisfy that their
diagrams are of the form of Hepworth’s construction. These are:
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e W(A,), or the symmetric group Sy+1, which relates to the sequence {W,,} by setting
Wi = W(A4;). In this case the starting diagram Dyy, is given by the single vertex sy,
or the diagram A;. This gives homological stability for the symmetric groups, as in
Example [5.1.2

e W(B,), or the signed symmetric groups Zs ! S, relates to the sequence {W,} by
setting W; = W(B;41). In this case the starting diagram Dy, is given by the
diagram Bs, as follows:

51 S1

Wi By

Homological stability was proved for wreath products by Hatcher and Wahl in [30]
Proposition 1.6].

e W(D,,), or the index two subgroup of W (B,,), which relates to the sequence {W,,}
by setting W; = W(D;42). In this case the starting diagram Dyy, is given by the
diagram D3, as follows:

<>1 - >
W D3

This was a previously unknown homological stability result.

REMARK 5.2.2. Since the Coxeter diagram Dy, can be any diagram with a finite number of
vertices, Hepworth’s result also proves homological stability for sequences of infinite Coxeter
groups, and for cases when the sequence is neither comprised fully of finite nor of infinite
groups. For example, in the case that the starting diagram is as follows:

S1 B |
441 Ay

Then the first five groups in the sequence are finite and the sequence takes the form
W(A4) — W(D5) — W(EG) — W(E7) — W(Eg) — -

however after the fifth group, the groups in the sequence become infinite Coxeter groups.

5.3. Homological stability for Artin groups: literature review

Inspired by the work of Hepworth described in the previous section, we aim to prove a
homological stability result for the sequence of Artin groups {Aw, } corresponding to the
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sequence of Coxeter groups {W,} of Hepworth’s paper. There are a few known cases of
stability for sequences of this form, reinforcing the hypothesis that a general statement such
as Hepworth’s will hold. All of the following examples were proved by Arnol’d, by computing
the full (co)homology of the groups in question, using the associated hyperplane complement.
The results and proofs are in the paper Sur les groupes des tresses by Brieskorn [10].

e Homological stability holds for the braid groups, by Example This is the
sequence of Artin groups {Aw, } for W,, the symmetric group W (A4,,) = Snpi1.

e Homological stability holds for the sequence of finite type Artin groups {Aw, } re-
lating to W), being the Coxeter group W (B +1).

e Homological stability holds for the sequence of finite type Artin groups {Aw, } re-
lating to W), being the Coxeter group W (D;2).

These examples are exactly the sequences of finite type Artin groups relating to the three
sequences of finite Coxeter groups known to fit into Hepworth’s result. However Hepworth’s
result is much more general and this is what we aim to prove in the case of Artin groups.

In Second Mod 2 Homology of Artin Groups by Akita and Liu [I], homological stability in
degree two with Zsg coefficients was proved, for the sequence of Artin groups { Ay, } relating to
Hepworth’s sequence {W,,}. They proved this by showing the mod 2 homology in degree two
of any finite rank Artin group was isomorphic to the mod 2 homology of the corresponding
Coxeter group. Therefore Howlett’s Theorem or Theorem gives Ha(A;Zs), and they observe
that for the sequence of diagrams relating to Hepworth’s, this formula stabilises.



CHAPTER 6

Results: Homological stability for Artin monoids

In this chapter we prove a homological stability result for families of Artin monoids corre-
sponding to Hepworth’s families of Coxeter groups. The key step in the proof of the theorem
is to show that a certain family of semi-simplicial spaces on which the monoids act is highly
connected. To define this family of spaces and prove the related connectivity requires the
theory of the previous chapter.

6.1. Discussion of results

This chapter concerns the homological stability behaviour of families of Artin groups. In
particular we consider sequences of Artin groups which have the braid group as a subgroup.
The sequence of groups and inclusions relates to the sequence of Coxeter groups {Wp,}n>1
introduced by Hepworth [31], and described in Section We let the Artin group Aw,
corresponding to the Coxeter group W,, be denoted A,, for ease of notation the sequence of
corresponding diagrams is

¢ S C .. s /72 Ny o *—e ...
| 1 09 1 02 On—1 On

Ay Ag Ap

where the grey box indicates a diagram of arbitrary shape, meaning that the sequence begins
with an arbitrary Artin group with finite generating set. As in the Coxeter group setting,
this gives a sequence of groups and inclusions

Al > Ay v Ay e

The finite type examples of this sequence were discussed in Section and are known
to satisfy homological stability. The results in this section relate to the more general set-
ting, where A; can correspond to any Coxeter diagram, but are stated and proved for the
corresponding Artin monoids. The results are then related to Artin groups via the K(m,1)
conjecture, discussed in Section

Recall that the Artin monoid corresponding to A, is denoted A;}. The inclusion map
between the monoids is denoted s and called the stabilisation map. This gives the following
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sequence of monoids, studied in this chapter.
+ S + S S + S
Al Ay — o= A — -
THEOREM 6.1.1. The sequence of Artin monoids
+ + +
Al = Ay — - =5 Al — -
satisfies homological stability. That is, the induced map on homology

H.(BAY ) % H.(BAY)

is an isomorphism when x < 5 and a surjection when x = 5. Here homology is taken with

arbitrary constant coefficients.

Recall from Theorem that the K (m, 1) conjecture holds precisely when the classifying
spaces of the Artin group and monoid are homotopy equivalent. Hence, if the conjecture holds,
Theorem implies homological stability even for the groups.

COROLLARY 6.1.2. When the K(m, 1) conjecture holds for all A,, the sequence of Artin
groups
Al > Ay — - Ay — -

satisfies homological stability. That is, the induced map on homology

H.(BAy_1) — H.(BA,)

is an isomorphism when x < § and a surjection when x = 5. Here homology is taken with

arbitrary constant coefficients.

PRrROOF. We have by Theorem that the K (7, 1) conjecture holds if and only if BA™ ~
BA via the natural map. Applying this homotopy equivalence to Theorem yields the
Corollary. O

This in turn reproves the homological stability results in Section [5.3

COROLLARY 6.1.3. Homological stability holds for the sequences of Artin groups {An}n>1
relating to the sequences of finite Cozeter groups W (Ay,), W(Bp+1) and W (Dy42).

PRrROOF. These three sequences consist of only finite type Artin groups, which satisfy the
K (m,1) conjecture by Deligne’s Theorem (Theorem [3.2.5)). Hence by the previous Corollary,
the sequences of Artin groups satisfy homological stability. O
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6.2. Outline of proof

The key step in the proof of Theorem [6.1.1] is to show that a certain family of semi-
simplicial spaces on which the monoids A;} act is highly connected. In this proof we build a

semi-simplicial space A7 for each monoid in the sequence A such that:
(1) AY is built out of spaces A} for p > 0
(2) there exist homotopy equivalences A ~ BAT _poq forp>0
(3) there is a map from the geometric reahsatlon of AZ to the classifying space BA;!,
which we call ||@s||

Az 5! By

(4) ||¢e]| is highly connected, i.e. it is an isomorphism on a large range of homotopy
groups.

We will refer to these four points as [I, 2| B] and [ throughout this chapter, and address
each point in turn. In this chapter the sections are arranged as follows. Section applies
the theory of Section in the case of the sequence of monoids we are working with, and
introduces notation used throughout the chapter. Section introduces the semi-simplicial
space A7 for each monoid in the sequence A, and addresses Points and Point [4| is
then the topic of Section in which the general method of proof for the high connectivity
argument is introduced before the proof is split into cases which are then proved individually.
Finally the homological stability result follows in Section

6.3. Preliminaries concerning the sequence of Artin monoids

DEFINITION 6.3.1. Let A be the Artin group corresponding to the Coxeter diagram Dy, ,
but with the vertex s; and all edges which have vertex s; at one end removed. We depict the

@

Ao

diagram as follows

Then Ay — Ay and we consider the sequence of Artin monoids
(5) Af > AT 5 A — - = A —

given by the diagrams

C%"'CH ......... *—e CH
1 02 1 02 On—1 On
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Here we note that for all p, every generator and hence every word in the monoid A; commutes
with o; for j > p+ 1.

We now apply the theory developed in Section to the specific case of A} a monoid in
the sequence from Equation and a submonoid of A;}, given by a previous monoid in the
sequence A;‘ where p < n. We adopt the following notation:

o Let EndMony(a) = EndMona, (o) and EndGeny(a) = EndGeny, (o) for o in A,
as defined in Definition [4.2.91 Then
EndGeny(o) = {os]|se€ SA;,O'S =g a}
EndMony(o) = {B€ A} |B=gral.

e Let A*(n;p) be the set A*(M) for AT = A} and M = Af. This set is defined in
Definition and is the set of words in A that do not end in a word from A; .

e Let the equivalence class of @ in A;} under the relation ~ with respect to the sub-
monoid A} (defined in Definition [4.3.5) be denoted [a], as opposed to [a]4,. Then
[a], is the equivalence class of o under ~, which is the equivalence relation generated
by the transitive closure of the relation ~ on A}l given by

a1 ~ g < a11 = agfs for some (1 and By in A;r.

Then we have from Lemma that the equivalence classes under ~ with respect to the
submonoid A; are in one to one correspondence with the set AT (n;p). Recall from Remark
that if 3 is the least common multiple of EndMony(c) then we define @ in A} to be the
word such that o = @B. Then A™*(n;p) is the set of all such @ and for all a; and as in Af:
]y = [az2]y = a1 =aa.
We also have from Proposition the set decomposition
AF = AT (n;p) x Af for all p < n.

6.4. The semi-simplicial space A?

We now build the semi-simplicial space A7 as required in Section [6.2] Point [T} A7 is built
out of spaces A} for p > 0.

DEFINITION 6.4.1. We define the semi-simplicial set Cg' by setting levels Cj for 0 < p <
(n — 1) to be the equivalence classes A/ ~ where the equivalence relation is taken with
respect to A:_p_l, i.e. =~ is the transitive closure of the relation ~ on A:{ given by
a1 ~ g < a11 = agfs for some (1 and Py in A;:_p_l.
Face maps are given by

az . C;L — C;L_l

a][f) : [Oé]n,p,1 = [O‘(O-n—p-i-ko-n—p—‘rk—l oo O'nprrl)}nfp-
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These face maps are well defined, if [a],—p—1 = [8]n—p—1 then @ = 8 where the bar is taken
with respect to Aqtfpfl‘ Set @ = v (recall the definition of @ from Remark . It follows
there exist some a and b in A:{fpfl such that @ = va and 8 = vb. Then since a and b only
contain letters in A;L_p_l and all of these letters commute with (0y—p4kOn—pik—1---Tn—pt1)
it follows that a and b letterwise commute with the face map. Taking the equivalence classes
with respect to Af{,p therefore gives

[a(o-n—p—i-ka-n—p-l—k—l .- O-nprrl)]nfp

[(va)(On—p+kTn—ptk—1 - - On—p+1)ln—p

[(V(On—p+kOn—pik—1--- On—p+1)@ln—p

[V(Un—p—l—kan—p—i-k—l ce Un—p+1)]n—p

and similarly

5(0—n—p+kan—p+kz—1 cee O—nprrl)]n*p

’Y(O'nfp+k0'nfp+kfl cee Gn—p+1)b]n—p

[

= [(0)(On—p+kTn—ptk—1--- On—pt1)]ln—p
[
[

V(Un—p—l-ko'n—p—&—k;—l e O'n—p-i-l)]n—p

therefore o and 8 map to the same equivalence class under the face map, and so the face maps
are well defined. The motivation for this choice of face maps follows Hepworth, as discussed
in [31], Example 35].

LEMMA 6.4.2. The face maps 0% on Cy defined in Definition satisfy the simplicial
identities, that is, for 0 <i < j < p:

—1 —1
oror = o Loy

PROOF. For ease of notation in the proof, we denote (n —p) as r. Then the left hand side

acts as follows
or or1

cr cr,

¢
o oo
[Oé]rfl F— [CM(O'T+]' . UT+1)]T  — [OZ(O'r+j e UT+1)(UT+i+1 . UT+2)]T+1'

In comparison the right hand side acts as follows

op or-]

cr l oy ey
or o)

[a]r_l P [a(arH A 0'7«4_1)},“ P [a(ar-i-i . 0'7~+1)

(Ur-i-j e 02|
Claim: Let x = (0'7«+j .. -UT+1)(UT+i+1 . O'r+2) and Yy = (
Then z = yo,41.

Optigeee UT+1)(UT+j e O'»,«+2).
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If we prove the claim then it follows that the left hand side is equal to the right hand side
since we are taking the equivalence relation with respect to the submonoid A:r _1- It therefore
remains to prove the claim, which is pure manipulation of the words in the monoid, using the
braiding relations.

r = UT—}-j'--0_7"—&-1)(0—7"—{-1'—&-1---0_7"4-2)

(
(Orgj - Orgi)(Orgict o Or g1 )(Orpip 10744 - Opg2)

(Or4j o Ortit10743)Or it 1 (Ortimt « - Or 1) (Orgi + - Opy2)

(Or4j -+ Ortit2) (Or4it10r+i0r+i+1) (Ortia1 + - Or 1) (Orgi + - Tpy2)
(Ur+j .- -Ur+z‘+2)(07-+i0r+i+10r+i)(Jrﬂel cee 0’r+1)(0r+z’ cee Ur+2)
O—'r‘+i(0—'r+j s Ur+z’+20r+i+10r+i)(ffr+z‘—1 ce Ur+1)(0r+z‘ e Ur+2)

= 0rti(Oryj- - 0r41)(Orgi - Org2)

Orti(Orj oo Opg1)(Orgi oo . Org2)

0r+z’07-+171(0r+;’ e UT+1)(UT+1‘71 .- 'Ur+2)

Opr44i0p44i—1 .- Ur+2)(0r+j ce. Ur+20r+1)(0r+2)
Or+i0pr4i—1--- Ur+2)(0r+j e 0r+3)<0r+20r+10r+2)
OryiOryi-1---0r42)(Oryj ... 0ry3)(0r 1101207 41)
Oprtig--- Ur+20r+1)(0'r+j .- '0r+3)(0r+20r+1)
Oprdgig--- 0r+20r+1)(0’r+j .- -Ur+30'r+20'r+1)

Op4q .- Ur+1)(0r+j e Ur+2)0r+1

LEMMA 6.4.3. The pth level of C} satisfies
At ) AT ~A+(n;n—p—1):Cg

n—p—1 —
where AT (n;n—p—1) is a defined at the beginning of this section. The homotopy equivalence
s given by the map defined levelwise on the bar construction by

BP(A:aAifpflﬂ*) - A+(n;n_p_ 1)
afmy,...,mp] — @
where o € AF, m; € A:—p—l for all i and o =af fora e AT (n;n—p—1) and B € A:—p—l'

PROOF. This is a direct application of Proposition |4.5.20| and the decomposition A, =
At(nyn—p—1) x AF O

n—p—1-°
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DEFINITION 6.4.4. Let the semi-simplicial space A7 be the semi-simplicial space with pth
level the homotopy quotient A} = A\ C, where the action of A;f on A*(n;n —p—1) is
given by

a[p—p-1 = [ac]p—p-1 for a,a € A}

Then A7 is given by:

AfNer h
bE
Af\er, o
EARE
Af\C s
Vb

Af\ep Ap

X
AENCE A

where face maps are denoted by 9% for 0 < k <p
({95 . A;l — AZ,]_
oy : A:{\\Cg — A:{\\Cg_l
and 9, acts as the face map 9, from on the Cp factor of each simplex in the homotopy
quotient, and as the identity on the other factors. The set of j-simplices in A} \\ C} is given
by (A1) x C' and an element in this set is given by [a1, ..., a;][a],—p—1 where the a; and a
are in A, Then the map &, acts on this simplex as
85([@1, o ag]laln—p-1) = (a1, a5][(On—ptkOn—pik—1 - - Onpt1)ln—p

and since the multiplication by (0 —p4kOp—p+k—1 - - - On—pt+1) is on the right it follows that 9%

commutes with all face maps of the bar construction B,(x, A,},C;}) for each k. Therefore the

definition of 8£ on the simplicial level gives a map on the homotopy quotient A"\ Cp-

LEMMA 6.4.5. The face maps 0, on A} defined in Definition satisfy the simplicial
identities, that is for 0 <i < j < p:

—1 —1
o = oo,

Proor. This proof follows directly from the fact that the simplicial identities are satisfied
for CJ (Lemma [6.4.2)), since the face maps for Ay are defined via the maps for CJ'. O
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+

To address Point there exist homotopy equivalences A} ~ BAn_p_1 for p > 0, in

Section [6.2] we prove the following lemma.

LEMMA 6.4.6. The pth level of the space A7 satisfies
noo AT\ AT ) AT ~ BAT
Ay~ AT\ AL A BA

n—p—1 — n—p—1
where the homotopy equivalence from the central term to the left is given by the realisation of
the levelwise map on (j, k)-simplices:

AT\ AT AT, Dow — (AT\C);
la,...,a]lalal,...,ar] — [a1,...,q]a

and the second homotopy equivalence is given by the levelwise projection of the (j, k)-simplices
of the double homotopy quotient map to the k-simplices of the single homotopy quotient:

(A \AT AT, Daw = G A, Dk

[a1,...,a;]ala), ... a;] — =[a},..., a}]
where o and a; are in A}, al is in A;lpfl, and o = af fora in AT(n;n—p—1) and 8 in
A+
n—p—1-

PROOF. From Lemma Cp=At(nsn—p—1)~ A} J Al |, and this induces
AZZAZ\\C”ZA?{\\AZ//A"’

n—p—1
with the homotopy equivalence given by the required map. We then have the following

A ATNAT AT = (AT N\AY) [ A= A,y =BA]

n—p—1 — n—p—1 n—p—1-
The central equality is due to the face that the double homotopy quotient is the geometric
realisation of a bi-simplicial-space and therefore we can take the realisation in either direction
first. The final homotopy equivalence is given by Lemma and the map is given by the
projection as required. Finally * j/ A:_p_l is a model for BAj{_p_1 by Lemma [4.5.17] O

To address Point [3} there is a map from the geometric realisation of A7 to the classifying
space BA", in Section [6.2| we need to define a map ||¢.|| as follows

4z ' B
and Point |4} ||¢e|| is highly connected, is the topic of Section

LEMMA 6.4.7. We have that ||AZ| ~ A} \ ||IC¥].

PROOF. The face maps in the bar construction B (*, A;" ,C;j) for the homotopy quotient
in Ay = Af\ C}) commute with the face maps in CJ and therefore with the face maps of
AZ. Therefore the two simplicial directions create a bi-semi-simplicial set and one can realise



6.5. HIGH CONNECTIVITY 127

in either direction first. Realising in the A7 direction first, which has face maps induced by
those of C}', completes the proof. O

Recall that A"\ x is a model for BA;}. We therefore define ||¢s|| as a map from A\ [|CZ||
to A\ .

DEFINITION 6.4.8. Define ¢o to be the semi-simplicial map from the bar construction
Be(*, A, |C2||) to the bar construction Be(x, A;7, *), defined by collapsing ||C?|| to a point:
$p: Bp(x, A, ICTN) — By(x, Ay, %)

lat,...,apla — [a1,...,ap)*
where a; is in A} for all 4, and a is in ||C}||. Then the geometric realisation ||¢| maps the
homotopy quotient A, \\ |C?|| to the homotopy quotient A} \\ x.
PROPOSITION 6.4.9. If ||Cd|| is (k — 1)-connected then the map ||pe| is k-connected.

PROOF. From [21] Lemma 2.4] we know that a semi-simplicial map f, : Xo — Y, satisfies
that || fe|| is k-connected if f, : X, = Y}, is (k — p) connected for all p > 0. The map | @] is
defined level-wise as the projection

Sp (AP x (1G] = (AP

Therefore since ||C7|| is (k — 1)-connected it follows that ¢, is k-connected and in particular
it is (k — p)-connected for all p > 0. It follows that the geometric realisation ||¢e| is k-
connected. U

6.5. High connectivity

This section is concerned with the proof of the following theorem

THEOREM 6.5.1. The geometric realisation ||C|| of the semi-simplicial set C is (n — 2)
connected for all n, i.e. m;(||C¢||) =0 for 0 <i<mn—2.

For the remainder of this chapter, we will refer to the geometric realisation of the semi-
simplicial set as a complex. Note that by this we do not mean simplicial complex.

6.5.2. High connectivity of complex ||CJ||. There is a specific argument, called a
union of chambers argument that is often used to prove high connectivity of a complex. It
is closely related to the notion of shellability and so we recall the definition of a shellable
complex.

DEFINITION 6.5.3 (see Bjorner [8]). Let K be a simplicial complex. K is called pure if
the set

T = {0 € K | o is not properly contained in any other simplex }
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satisfies that all simplices o in the set T' are of the same dimension i.e. K is a union of top
dimensional simplices. A shelling of a pure complex K is then given by a linear ordering
on T such that each o in T intersects with its predecessors in the ordering at a non-empty
union top dimensional faces, or facets, of ¢. For instance if the ordering of T is given by
T = {Fy, F1, F,...} then K is shellable if

j—1
Fj N U F;
=0

is a non-empty union of facets of F}; for all j. A complex K is shellable if it is pure and admits
a shelling.

LEMMA 6.5.4. If a complex K is shellable, and its top dimensional simplices are n-
dimensional then it follows that K is (n — 1)-connected.

PROOF. Counsider a shelling of K given by T' = {Fy, Fi, Fs, ...} for T defined as above.
Then Fy is contractible. We build up K by adding one top dimensional simplex at a time,
with ordering specified by the shelling. At each stage when we add a simplex F; we have that
the intersection with Ug;& F; is a non empty union of facets of Fj. If this intersection is not
the whole boundary of F}; then it follows that the addition of F} to Ug;g F; did not change the
homotopy type, i.e. Ug;é F; ~ (Uf;é F;) UF;. If on the other hand the intersection of Ug;ol F;
is the boundary of Fj, i.e. all the facets of F}, then the homotopy type may have changed
by wedging with a sphere S™, as the map JF} to Ug;é F;is null-homotopic by induction.
Therefore we can conclude that building up the whole complex K changes the homotopy type
from the original Fjy by either no change, or the addition of n-spheres. It follows that K is
(n — 1)-connected. O

A union of chambers argument applied to a complex X also shows that the complex is
highly connected. To follow a union of chambers argument, the complex X must be a union
of top dimensional simplices of dimension n for some n, i.e. the complex must be pure, as in
Definition The top dimensional simplices are then called chambers. The chambers are
ordered, not in a total order but in batches, or levels, which we denote X (k) for k£ in N, such
that X = Jyeny X (k). Let X (< 7) be X = (J;,—o X (k). We build X up by adding one batch
of chambers at a time, starting at X (0) and adding X (1) to create X (< 1), then adding X (2)
to X(< 1) to create X (< 2) and so on.

LEMMA 6.5.5. Let X, X(k) and X (< k) be as above, then X is (n — 1)-connected if the
following three conditions hold
(1) X(0) is contractible.
(2) Forr € N, all a in X(r 4+ 1) satisfy that a N X (< r) is a non-empty union of top
dimensional faces (facets) of a.
(8) If r € N, and a and b in X(r 4+ 1) then aNb lies in X (< r).



6.5. HIGH CONNECTIVITY 129

PRrROOF. This proof is similar to the proof of Lemma We build up X by starting
with batch X (0), which by point (1) is contractible. We add batch X (k) to X(< k—1) at
each stage to get X (< k). By point (2) and the proof of Lemma adding each individual
simplex in the batch X (k) either does not change the homotopy type of X (< k—1) or changes
it by the addition of an n-sphere only. Point (3) tells us that adding on a whole batch of
simplices at the same time does not change the homotopy type by anything other than if the
addition were of the simplices one at a time. This is because any intersection between the
simplices in a batch X (k), takes places in the previous batches X (< k — 1) where we have
already calculated the homotopy.

The diagram below shows a conceptual view of the building up of the complex X, with
the cylinders representing chambers, the colours batches and the overlaps intersections.

0 X(1) X(1)
X(z)§

X(<0) X(<1) X(<2)
]

In [17], Davis uses a union of chambers argument to prove that the Davis complex Yy
associated to a Coxeter group is contractible. He does this by showing that the Davis complex
is an example of a basic construction, which satisfies hypotheses such as those in Lemma|6.5.5
Hepworth’s high connectivity results relating to homological stability for Coxeter groups [31]
also use such an argument. In [40], Paris uses a union of chambers argument to show that the
universal cover of an analogue of the Salvetti complex for certain Artin monoids is contractible.
This proves the K (7, 1) conjecture for finite type Artin groups. In this chapter we use a similar
union of chambers argument to prove high connectivity. Whilst applying the argument in the
case of Artin monoids and the complex we have constructed, numerous technical challenges
arise, leading to the proof being split into many separate cases that each have to be approached
differently.

To prove high connectivity in our set up we use a union of chambers argument applied to
the complex [|CJ||. We filter the top dimensional simplices by the natural numbers as follows:

DEFINITION 6.5.6. For k in N we define C"(k) as follows:

c'(k) = J [olo
aGAI,
L(a)<k
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Where [a]p is the (n — 1) simplex in ||CJ|| represented by [a]o in C]'_;. Then [|C]| is given
by limy_, C"(k).

REMARK 6.5.7. Note that every simplex in ||C{'|| arises as a face of some [a]o, since smaller
simplices are represented by some [7]; for £ > 0 and this is a face of [7]o. In the language of

Definition IC&| is pure.
The union of chambers argument relies on the following two steps:
(A) If /() = k + 1 then [a]o N C™(k) is a non-empty union of top dimensional faces of [«]o.
(B) If £(a) = £(B) = k + 1 then [a]o N [B]o C C™(k).
which correspond to conditions (2) and (3) in Lemma [6.5.5]

PROPOSITION 6.5.8. If points and (B) hold then it follows that ||C|| is (n —2) con-
nected.

PROOF. This proof follows from Lemma[6.5.5] We build up ||CZ|| by increasing k in C"(k).
We start at C™(0) = [e]o, which is a single simplex and thus contractible, this proves point
(1) in Lemma At each step we build up from C™(k) to C"(k + 1) by adding the set of
simplices represented by words in A of length (k + 1):

U oo

aGA;«L",
L(a)=k+1

In the language of Lemma [6.5.5| these are the batches X (k+1) and X (< k) is given by C"(k).
Then point says that when [a]o is added to C"(k), the intersection is a non-empty union
of facets of [a]o. This is precisely point (2) in Lemma and point is precisely point
(3) in Lemma m Therefore the proof follows from the proof of Lemma m O

6.5.9. Proof of Point [A} Facets of [a]y. We first focus on the proof of (A]), for which
we start with a discussion of the top dimensional faces, or facets of a simplex [a]o. Consider

the face maps
9 tiChy = Chy
82_1 : [[Ck]]() — [[a02+q_1 . UQ]]l

for 0 < g <n—1. Here 0871 is right multiplication by the identity.
Under these face maps the facets of [a]y are given by

[al1, [aoa]r, [aosoo]r, [aososos]r, -, Jaonon_1...0302]1
PROPOSITION 6.5.10. If () = k + 1, at least one of the facets of [a]o lies in C" (k).

PROOF. We must show that at least one facet of [a]o is also a facet of some simplex [a]o,
where £(a’) < k.
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Consider EndGeny(«). If this is non-empty then there exists n with length at least 1 in
A7 such that a = a/n. Tt follows that [a]1 = [a'n]1 = [@/]1. Therefore the facet [a]; is also
a facet of [o']p and since n had length at least 1 it follows ¢(a/) < £(a) = k+ 1 and so [o']o
is in C" (k).

Alternatively if EndGen;(a) = 0, then since ¢(a)) > 1 it follows that EndGeny,(«) # (0. Tt
follows from these two observations that {09, ...0,} N EndGen,(a) # 0. For some 2 < j <n
we therefore have that a = /0. Applying the face map 975 gives

077 ([eJo) = [aoj-1...02h
= [dojoi_1...001
= 9 ([o'To)
and as before ¢(a’) < k. This shows that the facet 8;‘:21([[04]]0) is also a facet of [o']p and is
therefore in C"™ (k). O

To complete the proof of we must show that if a lower dimensional face of [a]o
intersects C"(k) then this is contained in a top dimensional face, or facet, that intersects
C"(k). We first describe a general form for faces of [a]o.

6.5.11. Proof of Point Low dimensional faces of [«]o.

DEFINITION 6.5.12. A face of [« is obtained by applying a series of face maps to [a]o.
We denote the series of face maps applied by a tuple (8{;*1,82;2, e ,OZ*TH), and we let
aj :=0j;—1+4j...0;j. That is, the (7 —1)st map in the tuple corresponds to right multiplication
by a;. We note here that a; has length i; and ends with the generator o;, unless i; = 0 in

which case a; = e.

—j+1
82 J N ,g_j_i_l — CZ—]
Halj—e = [aoi—14g . 05] 50
= lag;]j-1-

From now on we assume that the first map in a tuple maps from C]_; to C/_,, the second
map from C]_, to C]'_; and so on. We therefore dispense of the superscripts in the 0 notation
for the face maps when we write these tuples.

With the above notation, an (n — p — 1) subsimplex of [a]y occurs when a tuple of face
maps (0s,, 0is, - - -, 0y, ) is applied to [afo. The image of these maps is then the subsimplex
[aas ... aps1], with a; defined as in Definition above.

LEMMA 6.5.13. With the above notation, the tuple of face maps (0, )fi% can be organised

such that ij41 > i; for all j, which translates to £(aj+1) > £(a;j).

PROOF. This is a direct consequence of Lemma O
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LEMMA 6.5.14. The (n —p — 1) subsimplex of [a]o given by (0i,, 0is, ..., 0i, ) or alter-
natiwvely [aas . . .api1]p is a subsimplex of the following facets of [a]o:

o 0;,([eo) = [aaz]
dis+1([a]o) = [easos]s
e 0;,+2([a]o) = [casosoa]s

¢ 9iyrip-1(lalo) = [aaps10p .. 0ol

In general the face map Oy, 4 (j—o) acts on [a]o to give [aajoj_1...02]1.

PROOF. It is enough to show that 6ij+(j_2) can act as the first face map in the tuple
(0iy, Oig5 - - -, 05,y ) for all j. Recall from Lemma[6.5.13|that in the tuple we have ;.1 > i; for
all j. It therefore follows that using the simplicial identities, the tuple can be rearranged to

(aij+(j_2)’ai2’ai3""787:j7"‘707:p+1)- |:|

For the remainder of this section, let o in A, with £(a) = k+1. The aim of this section is
to show that if the (n —p — 1) subsimplex of [a]o given by (0;,,0is, ..., 0;,,,) or alternatively
[aas ... api1]p is in C™(k) then it follows one of the facets of [a]o from Lemma is also
in C"(k). The proof of will then follow.

DEFINITION 6.5.15. If Jaasg . ..apt1]p is in C™(k) then it is also a (n — p — 1) subsimplex
of a simplex [(]o for some 3 in A such that ¢(3) < k. The subsimplex is therefore obtained
from [S]o by applying a tuple of face maps, denote these (9,,dy,,...,0;,.,) and order as in
Lemma such that 1;;1 > I; for all j. Define b; := 0y,_14;...0; and when [; = 0 let
bj = e. Then (0,0, -..,0,,,) applied to [B]o gives the (n —p — 1) simplex [Bbs...by11]p.
By construction [#by ... byt1]p = [aas ... apt1],. We recall here that £(aj) = i; and £(b;) = I;.

LEMMA 6.5.16. We choose B and b; as defined above, such that Ziié l;, is minimal,
corresponding to by ... byy1 being of minimal length. This choice of by . ..by11 then corresponds
to either:

laas .. .apt1]p = [Blp that is, [; =0V j
or

UB) = t(a) —1 = k.

PROOF. Suppose that 5 and b; are chosen such that Zii; [, is minimal, and furthermore
suppose that ¢(8) < f(a) — 1 and Zi:; I > 0. Then some I # 0: set j to be mini-
mal such that I; # 0. Then b; = 0y, 14...0; # e and [Bbz...bpr1]p = [Bb; ... bpt1], =
[Bot,~14j---0jbjr1...bpr1]p. But this is the tuple of face maps (0,-1,9,,,,...,0,,,) ap-
plied to [Boy,—14;]o. Since £(8) < £(a) — 1 it follows that £(fBoy;,—14;) < €(a) — 1 and so
[Bo1;~145]0 is in C"(k). However the tuple for So;, _14; has the sum of its corresponding I;
less than the original tuple for 8. This is a contradiction, as § was chosen to have minimal
S P11y, Therefore either S™P1 1, = 0, or alternatively £(8) = £() — 1. O
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For the remainder of this proof, assume 8 and b; are chosen such that Zzi; [, is minimal,
so we have
[[Bbg e bp—i-l]]p = [[aag e ap+1]]p
for either Zii; lp =0o0r {(B) =4(a) — 1 = k. We use the following notation throughout the
remainder of this chapter.

DEFINITION 6.5.17. Let a := aa...apy1 and b := by...b,11. Note that Zzg I, =0

corresponds to b = e. So we have
[aa], = [B0]p
and we recall that this is equivalent to @a = #b in A" (n;p). Let v := aa = Bb, and define u
and v in A;‘ such that
aa = ~yu and Bb = yv.
We complete the proof of by splitting into three cases:

(i) £(Bb) < (o)

(i) £(3b) = ¢(aa)
(iii) ¢(Bb) > ¢(a)
and since multiplication in the Artin monoid corresponds to adding lengths the conditions of
these cases correspond to analogous conditions on the lengths of v and v.

REMARK 6.5.18. Note that if Zﬁi; li = 0 then b = e, and since £(5) < {(«) it follows we
are therefore in case ({):((8b) < {(aa).

We prove the three cases one by one in the following subsections. This involves many
technical lemmas, and in particular computation of least common multiples of strings of
words. We therefore include all these technical lemmas on least common multiples in a
separate section and refer to them as required.

6.5.19. Proof of Point [A} least common multiple calculations. Recall from Def-
inition that a face of [a]y is obtained by applying a series of face maps to [a]o.
We denote the series of face maps applied by a tuple (3{;71,61-’;72, .. ,837”1), and we let
aj = 0i;—1+4j...0; and when i; = 0 let a; = e. That is, the (j — 1)st map in the tuple
corresponds to right multiplication by a;. We let @ = as...a,11. Recall also that if [aa],
is in C"(k) then the subsimplex is also obtained from some [§]o for ¢(8) < k, by applying a
tuple of face maps (9y,, 95, - - -, 0y, ). Recall bj := 0y, _14;...0; and when I; = 0 let b; = e.
Let b = by...bp+1. By construction [$b], = [aa],. Recall from Definition that for o
and 3 two words in AT, we denote the least common multiple of o and 3 (if it exists) by
Ao, B).

LEMMA 6.5.20. With notation as above, A(ajt1,05) = aj4105aj4+1.

Proor. We must show
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(a) aj+1 jR aj+1ajaj+1 and 0 jR aj+1ojaj+1.
(b) if z in A} is a common multiple of aj;1 and o}, then aji0;aj41 =g .

Recall ajt1 := 04, ,+j...0541. Without loss of generality, relabel j =1 and ij41 +j = k.
Then aj11 = 0f...02 and 0 = 04

To prove (a) we note aj+1 =R aj4+10;aj41 from observation, and also

ajy10ja4j41 = (0f...02)01(0)...02)
((oxOk—10)0k—2...02)01(0k—1 . ..02)
((0k—10k0k—1)0k—2...02)01(0)—1 ...02)
(0k—10k(Ok—10% 20k 1)0k—3 ... 02)01(0)—2...02)
= (0k-10k(0k—20k-10—2)0k—3...02)01(0)2...02)

(Uk—lo'ko'k—QUk—l e 020302)01(02)

(Ok—10kOk—20k—1 ... 0203)(020102)

= (Op—10kOk—20k—1...0203)(0102071)

SO 01 = 0 jR aj+1ojaj+1.

To prove (b) we note that a;y10;a;41 is a common multiple, and we show by induction
on {(aj+1) that any common multiple  must satisfy a;110jaj41 =g ©. When €(aj11) = 1,
aj+1 = 09 and we have A(O’Q,O’l) = 0901092 — aj+1ajaj+1. When E(ajH) =r —1 for
r > 2, assume that A(ajq1,05) = ajy105a541 and prove for f(aj41) = 7. Assume z sat-
isfies aj41 <p = and 0; < x. Since {(ajy1) = r this means aj1; = 0,41...02 and so
Ort1.-.02 g x which in particular gives o,...09 <p x. By the inductive hypothesis it
follows that A(o,...09,01) = (0y...02)01(0y ...02) and this is in EndMon,(z) by Lemma
Let x = 2/(0y...02)01(0y...02). Then since o,41...09 <g x, by cancellation of
oy ...09 we have that 0,41 < 2/(0...02)01 = 2’0 (071 ...0201). Since 0,1 letterwise com-

mutes with (o,_1...0901), from Lemma 4.3.12| 0,11 <g 2/0,. From Lemma it follows
A(or41,0r) = 0r0r110, 2 ©'0,. By cancellation of o, this gives 2’ = 2”0.0,11, so

r = () (or...00)01(0p...09)
= (2"0r0041)(0p...00)01(0r...09)

2 (oror10:)(0r_1 ... .09)01(0p ... 09)

(o
2" (op41000011)(0r—1 ... 02)T1(0r . . . O2)
//

(Or410r0, 41071 ...02)01(0p ... 02)
= a2"(op4100001...09)01(0p 110, ... 09)
= m”CLjJrlffjajH

as required. O
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LEMMA 6.5.21. Recall from Lemma |6.5.20) that A(aj+1,0;) = ajy10jaj41. We have that
4j 410541 = 0005110,
where a; = Tijyr+j—1---Tijtj and letterwise commutes with as...a;_1.
PRrROOF. Recall ajy1 = Oijprtj- - Oj+1 and a; = Tij—1+4j - 0j- Without loss of gen-
erality, relabel j = 1 and i;4.1 +j = k, and i; — 1+ j = [. Then ajy; = 0...02 and
o0; = 01, and a; = 07...01. Note that since ;4,1 > 7; then k > [. We want to show that

Aj4+1050541 = djajajﬂaj where &j =O0k—1:--0041-
Now recall from the proof of Lemma [6.5.20| that

aj+1ajaj+1 = (Uk .. .Ug)dl(Uk . ..(72)

= (0k—10k0k—20k_1 ...0203)(010201).

We now move all generators in this expression as far to left as possible, past all other generators
that they commute with.

aj+10a541 = (O)p_10k0k—_20k—_1...0203)(010201)
Ok—10kOk—20k—1 - .. 030402(0301)02071
Ok—10k0k—20k—1 - - . 030402(0103)0201
Ok—10k0k—20k_1 - .. 03(040901)(030207)
Ok—10k0k—20k_1 - .. 03(020104)(030207)

Ok—10%0k—20k—1 - - . (05030201)(040302071)

0k—1(0pOk—20k_3...0201)(0k—10k—2...0207)
0—1(0k—20k_3...02010;)(0k—10k—2 . ..0207)
(0k—10k—20k—3 ...0201)(0kOk_10k—_2 ...0201)
((0g—10k—2...0141)(07...0201))((0kOk—10k—2 ... 02)01)
(0k—10—2...0141)(07...0201)(0kOk—10k—2 . ..02)(01)
(

aj)(aj)(aj+1)(o;).

Then a; = 041 ...041 where [ is the maximal index of a generator appearing in a;. Since
ij > 151 it follows that [ —1 is the maximal index of a generator appearing in a;_; and hence
in the string as...a;_1. Therefore a; letterwise commutes with as...aj_1 since the indices
of the generators in each word pairwise differ by at least two.



6.5. HIGH CONNECTIVITY 136
O

DEFINITION 6.5.22. Recall the definition of a; and b; for 2 < j < p + 1. Define ¢; as
follows

_ f aj if l(aj) > £(bs)
= { b if 6(a;) < £(b))

for 2<j <p+1. Define c:=ca...cpt1.

LEMMA 6.5.23. With ¢ as defined in [6.5.29 and a and b as defined in we have
c=Ala,b).

PrOOF. We must prove that

(a) a g cand b <R ¢, i.e. there exist a’ and V' such that ¢ = a’a = b'b
b) if x in A is a common multiple of @ and b, then ¢ <g x.
n

To prove (a), we show that ¢ = d’a, and the proof that ¢ = 0'b is symmetric. We have that

;o { e if £(aj) = €(b;)

/
ci = a.a; where a .
J 77 J Olj4j—1+--04;4j if E(aj) < g(b])

The smallest generator index in a;- is (i; + j) and the largest generator index in ay...aj_1 is
(ij—1 + (j — 1) — 1). Therefore, since | (i; +j) — (ij—1+ (j — 1) — 1) |=| (45 —ij—1) + 2) |> 2,
since i > i1, ag letterwise commutes with as...a;_1. Let ' =df ... a;H. It follows

c = C2...Cp11
= (aga2)(asas). .. (aps1apt1)
aya3a2a3 . . . (a4 1Gpy1)
anay ... 4y, 10203 ... Apy
= (agay...a, 1)(a2a3. .. apy1)

/
= aa

which completes the proof of (a).

To prove (b) assume z is a common multiple of a and b.

Claim: If ¢ ...cp41 <g z for some 2 < k < p+ 1 then z = ¢y ... cpy1 for some z in A
We claim that x; satisfies as...ar—1 gz and by ...bg_1 <R Xk-

Given the claim, the proof of (b) will follow since a = (az...ap+1) =g = and b =
(ba...bpy1) =g « implies that cp,y1 =g z, so © = zpr1¢py1. But then z,,1 satisfies
as...ap =R Tpy1 and by ...b, Xg xp11 by the claim. In particular this means ¢, <g x,11 and
it follows that = = zpc,cp1. Continuing in this manner we arrive at © = za(c2 ... ¢pt1) = 2c
and so ¢ =g x. It therefore remains to prove the claim.
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Since ¢ ... cpy1 = (apar) - .. (apy1ap1) = (af, ... ap 1) (ay ... apy1) it follows that

r = wp(ck...cpy1)
zp(ay .. apyq)(ak ... api1)
= yr(ag...app1) for yp = zp(ay ... apyq).

Since x is a common multiple of a and b then we also have a = (az...ap+1) <r «, i.e for some
Zk-

= zp(az...apt1)
Therefore by cancellation of (a ... apt+1),
yr = 2zK(az ... ag—1)
By Lemma A((ay, .- apyq), (az. .. ag—1)) =g yg. Since the two words letterwise com-
mute A((ay,...ap.q),(a2...ak-1)) = (a2...ar-1)(a}...a,,,) and so
Yp = wi(az ... ap_1)(ay ... a, )

for some wy, in A;F. So we have

r = zp(ck...cpp1)
yr(ak - . apt1)
wi(az ... ag—1)(ay ... a,, 1)(ak ... api1)
wi(az ... ap—1)((a), ... ap 1) (ak - .. apy1))
= wi(az...ap—1)(ck...cps1)
and by cancellation of ¢y ...cp41 on the first and final lines of the above equation, we have

that (ag...ar—1) =g xj as required. The proof for (by...bx—1) =g x} is symmetrical. This
completes the proof of the Claim and thus of (b). O

6.5.24. Proof of Point Proof of case ({i):((8b) < {(aa).
PROPOSITION 6.5.25. Under the hypotheses of case @), it follows that EndGeny(aa) # 0.

PROOF. Recall that for some u and v in A}, aa = yu and b = yv. If £(8b) < {(ca) then
it follows £(yv) < ¢(yu) and consequently ¢(v) < £(u), since multiplication in A, corresponds
to addition of lengths. Since the inequality is strict, it follows that £(u) # 0, i.e. u # e. It
follows that since aa = yu, u € EndMony(aa) so in particular EndGen,(aa) # (. O

REMARK 6.5.26. To prove point in the setting of case , it is therefore enough to
prove that if EndGeny(aa) # (0 and [aa], is in C"(k) that a facet containing [cal, is in C™ (k).

PROPOSITION 6.5.27. If EndGeng(aa) # () then the facet [aas]1 containing [oa], is in
C(k).
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PROOF. Consider 7 in EndGeng(aa). Then since the generators Sy of Af commute
with o9,...,0, it follows that 7 letterwise commutes (see Definition with a since
a =ay...aps1 and therefore a only contains letters in the set of generators {o2,...0,}. We
therefore have that 7 and a are both in EndMon,(aa) and they letterwise commute. It
follows from Lemma that 7 is in EndMon,(a), so for some o in A, o = o/t with
o) < ().

The facet [aaz]; therefore satisfies

[aas]i = [/ Tas]y = [/ ast]i = [/ az];.

Here the final equality is due to o/asT = o/as where the reduction is taken with respect to
Af (from Lemma . The penultimate equality is due to the fact 7 and ay letterwise
commute. Since {(o/) < {(a), [¢/]o is in C"(k) and [o/ag]; is a facet of [a/]g. Therefore
[acaz] is in C™(k) and this completes the proof. O

The case where EndGeny(aa) # 0 but EndGeng(aa) = () requires the following technical
lemma.

LEMMA 6.5.28. Suppose a; # e, then the words aj and ajy1 as defined in Definition

satisfy aj1105 = aja;, for some a; in Al with €(aj) > 1, since £(ajr1) > (aj) > 1.
Furthermore a; letterwise commutes with as...aj—1. Regardless of whether or not a; = e,
n—j+1

aj110; corresponds to the face map 141

PRrROOF. If a; # e then aj+10; = a;ja;. That is

aj110; = (Cijp1+j---0j+1)0;

(Gijsr4 - Oig4j)(Tijj—1- - 0j41)0;
(Oijirts Ty (i1 - Oj1105)
= (Oij 145 Oij45)a;
= ajqy

80 Gj = 0, +j---0i;+j. The letters appearing in az...a;—1 are {02,...,04_,4(j_1)-1} and
so to prove that a; letterwise commutes with as...aj_1 it is enough to show that the set
A ={0i;1j,...,0i;,,+j} pairwise commutes with the set B = {o,... ,aij71+(j,1),1}. The
largest index of a generator in B is i;_1 4+ (j — 1) — 1 and the smallest index of a generator in
A s i;+j so it is enough to show | (i;+j) — (4j—1+ (j — 1) — 1) |=| (¢; —ij—1) +2 |> 2. This
holds since i; > i;_1, and so a; and as...a;j_1 letterwise commute. Regardless of whether or
not a; = e, aj410j = @;ja; = 0, +; - - 0j corresponds to the face map OZ:E as in Definition
6.5.12) O

PROPOSITION 6.5.29. If EndGen,(aa) # 0 but EndGeng(aa) = () then some oj is in
EndGeny(aa) for 1 < j < p. Then the facet [cajoj—1...02]1 containing [aa], is in C*(k).
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PROOF. If EndGeny(aa) = 0 and EndGeny(aa) # 0 it follows that {o1,09,...0,} N
EndGeny(aa) # 0, so some o; is in EndGen,(aa) for 1 < j < p. We have that o; and
a = ay...apt1 are both in EndMony,(ca). In particular o; and ajia...ap41 are both in
EndMony(oa). Since o and ajy2...ap11 letterwise commute we have from Lemma
that o is in EndMony,(cas...aj41). Since ajq is also in EndMony,(aas ... ajy1), from
Lemma [4.3.9 we have A(aj11,05) is in EndMony,(oaz . .. aj41). From Lemma [6.5.20/ we have
A(ajy1,05) = aj10jaj41 S0 aj4105a541 is in EndMony,(aas ... aj41). By cancellation of
ajt1 it follows that aji10; is in EndMony(aas . .. aj), so aas .. .aj = o/ (aj4104) for some o
in A}.

Recall Lemma and split into two cases:

(a) aj # e

(b) CLQ:-":CL]‘:(E

For case (a) recall from Lemma that a;110; = aja; and a; letterwise commutes with
as...aj—1. Together with aas...a; = o/(a;4+10;) this gives

/
aay . .. aj = « (CL]‘_HUJ')
= o'(ajay)
= aay...a;1 = a’c‘zj by cancellation of a;

Now afas...aj—1) = a’dj and a; letterwise commutes with as...a;_1. By Lemma |4.3.12] it
follows that a; is in EndMony (), that is there exists o in A} such that a = o”a;.
Then the facet [aajo;_1...02]1 satisfies

laajoi_i...020

= [[o//&jajaj,l ce 0'2]]1

and by Lemma 6.5.28/Gja; is a face map ﬁzzfﬁ, SO Gja;0;_1...02is also a face map 8injzll+j71,
and therefore [aajoj_1...02]1 is also a facet of [o']o. Since £(a;) > 1 it follows £(a") < £(c)
and so [aajoj_1...02]1 € C"(k).

For case (b), ag = --- = aj = e gives that a;410; is in EndMony(«), so a = &’ajq10; for

some o in A with £(a/) < £(c). Then the facet [aa;o;_1 ...02]1 satisfies

laajoi—i...o2
= [(dajp105)a05-1... 03]y

= [[Oé/(aj+10j0'j_1 e 02)]]1 since aj =e
and as before by Lemma [6.5.28| this is a face of [o/]o which is in C"(k) as required. O

This concludes the proof of case ({i).
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6.5.30. Proof of Point Proof of case (ii):((3b) = {(aa).

PROPOSITION 6.5.31. Recall that for some u and v in A;, and vy in Al with
EndMony,(y) = 0, that aa = yu and Bb = ~v. If we are in case then we only need to

consider when aa = b = .

PROOF. Case states that ¢(8b) = ¢(aa), which implies that ¢(yu) = ¢(yv) which in
turn implies ¢(u) = ¢(v) by cancellation. If u # e then aa satisfies EndGeny(aa) # 0. By
Remark it was under this hypothesis that we proved case ({i), i.e. if this holds then we
have proved in the proof of case ({i) that a facet containing [aa], lies in C"(k). Therefore
we can assume u = e, which implies v = e since they have the same length. Therefore
aa = b =1r. O

Recall the definition of ¢; as in Definition [6.5.22

_ f aj if l(ay) > £(bs)
= { b if L(a;) < £(b;)

for 2 < j < p+1. Recall ¢ = cz...cps1. Recall that since £(8) < ¢(a) then in case (ji):
£(Bb) = £(aa) that it follows £(b) > £(a).

PROPOSITION 6.5.32. With the notation as above, there exists at least one j for which c; =
bj # aj. Consider the maximum j for which c; = bj # a;. Then the facet [aajo;—1 ...02]1 of
[alo containing [aa], is in C"(k).

PROOF. Recall ¢ = a’a = 0'b where o’ = ajy...a;,; and b' = by...0),; as defined in
the proof of Lemma We fist prove the existence of j in the statement. Note since
0(B) < £(a) it follows that b # e and so from Lemma it follows that ¢(8) = (o) — 1
which gives £(b) = £(a) + 1. Putting this together we get ¢ = a’a = /b and £(b) = £(a) + 1,
which gives £(a’) = £(b') + 1 and in particular £(a’) > 1. It follows that at least one a; # e
ie. Cj = bj 75 a.

Recall also that aa = b = v from Proposition Therefore a and b are in
EndMony(ca) and it follows from Lemma that A(a,b) is in EndMon,(aa). From
Lemma A(a,b) = ¢ so it follows that ¢ is in EndMony,(aa) i.e. we have for some o/ in
A with £(a’) < £(c) that

aa = d'(c) = d(da).

By cancellation of a we have a = o'd’.
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Consider the maximal j for which ¢; = bj # a;. Then @}, =--- =aj,; = e, ie. d' =
ay...as. It follows that the facet [aajo;—1...02]1 satisfies
oeajaj_l...agl = o a aj(Tj_l...Ugl
[() | [(aa) |
[[(CKIG,IQ . a;-)ajaj_l e 02]]1
[[o/a/Q e (a;-aj)aj_l e 02]]1
[[O/CL/2 e (Cj)O'jfl e 0’2]]1
= [[O/(Z/Q e a;_l(bj)aj,l e 0'2]]1.

Post multiplication by bjoj_1...02 corresponds to the face map 3;;1;72 (recall £(bj) = ;).

Therefore [aajo;_1 .. 02]]1 is a facet of [d/ay...a}_ 1]]0 and we have that {(a/a5...a}_ ;) <
() since a = do’ay...a; and £(a}) > 1 (¢; = bj = aja; # a;). Therefore [aajoj_1...02]1 is
in C"(k). O

6.5.33. Proof of Point Proof of case ({ii): ¢(8b) > {(aa).

PROPOSITION 6.5.34. Recall that for some u and v in A}, and vy in A} with
EndMony(y) =0, that ca = yu and b = yv. If we are in case then b # e. Furthermore,

we only need to consider the case when v = aa so fb = yv = aav. In this case it follows
EndGeny(5b) # 0.

PROOF. Case states that ¢(8b) > ¢(aa), and note that this can only happen when
b # e since {() < {(c). Recall this implies ¢(8) = ¢(c) — 1 from Lemma [6.5.16] If u # e then
aa satisfies EndGeny,(aa) # 0. By Remark it was under this hypothesis that we proved
case ({i), i.e. if this holds then we have proved in the proof of case ({ij) that a facet containing
[aa], lies in C™(k). Therefore we can assume u = e. Then aa = ~ and it follows that
Bb = yv = aav. Since £(5b) > {(aa) it follows £(v) > 1 and therefore EndGen,(8b) # 0. O

PROPOSITION 6.5.35. If EndGeng(Bb) # 0, this contradicts the choice of b, i.e. we chose
b such that ZZJ:% i, was minimal, as in Lemma .

PROOF. Let 7 in EndGeny(fb). Then since 7 letterwise commutes with by...bpy1 it
follows that 7 is in EndGeng(3) from Lemma [4.3.12, Then 8 = /7 for some 3’ in A} with
(B") < £(B). Then

6], = [(B'7)bly
[[ﬁ 0]y
= [p brlp
= [[ b]]p
which contradicts our choice of b, since 8’ can be enlarged to ¢(«) —1, by including the leftmost
generator from b, and this would reduce the length of b. O
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PROPOSITION 6.5.36. If o1 is in EndGen,(Bb) # 0, this contradicts the choice of b, i.e.
we chose b such that Ziié Iy, was minimal, as in Lemma .

PRrROOF. If 0} is in EndGen,(Bb), then since oy letterwise commutes with bz ...by41 it

follows that oy is in EndGen,(8bs) by Lemma4.3.12] From Lemmal6.5.20, A(o1,b2) = bao1ba
and by Lemma [4.3.11] this is in EndMon,(Sbs), giving by cancellation of by that byoy is in
EndMon,,(B3). So 8 = [8'byo for some ' in A}, Then

[(B)D)], = [(Bb201)(B)]p
= [(B'bao1) (b2 bps1)]p

and by Lemma [6.5.21] boo1bs can be written as l;lalbzal where here we note that b; in the
notation Lemma [6.5.21] acts as o1 here. So we have

[(B)D)], = [(B'b201)(b2-..bpi1)],
= [B'(b201b2) (b3 ... bps1)]p
= [B'(b1o1bao1)(bs ... bpr]y)
= [B'(bro1ba)(bs ... bpr1)o1],
= [B'(bio1)(b2bs ... bps1) ol
= [Bbio1(b)on],
= [[ﬁ/i’lalb]]p
with £(8'boy) < £(B). This contradicts the choice of b as in Proposition O

PROPOSITION 6.5.37. If EndGeny(8b) # 0 but EndGeni(8b) = 0, this contradicts the
choice of b, i.e. we chose b such that Zii; l was minimal, as in Lemma .

PROOF. If EndGeny(5b) # 0 but EndGen;(8b) = 0, then o; is in EndGen,(8b) =
EndGeny(B(b2 . ..bp+1)) for some 2 < j < p. Since o; letterwise commutes with bjio...bp41
it follows from Lemma that o; is in EndGeny,(Bby...bj+1). From Lemma
A(oj,bj+1) = bj+105bj41 and by Lemma this is in EndMon,(Bbs...bj41), giving by
cancellation of the by that bj; 105 is in EndMon,(Bby...b;). By Lemma bjt10; =
b;b; and so by cancellation of b;, b; is in EndMon,(Bbz...bj_1). From Lemma since
l_)j letterwise commutes with by ...b;_1 we have l_)j is in EndMon, () so 5 = ﬁ’l_)j for some 3’



6.5. HIGH CONNECTIVITY 143

in Al with £(8") < £(8). Then it follows that
[B)oly = (B0

p
B8 )
B'j)(bz ... bj—1)bj (bjs1 - - bps1)lp
= [(8)(b2...bj—1)(b;bj)(bj41 - bps1)]p

= [B'(b2...bj-1)(jr105)(Djr1. . . bpy1)]p since b;d; = bji10;
= [8'(b2...bj—1)(bj+105bj4+1) (bjt2 - bp+1)]p

) since bjy10ibisq = bibibii 10
= [B'(ba-..bj—1)(bjbjbjt105)(bjy2 - - bpi1)]p T e 6+5121

by Lemma
= [8'(ba- - bj-1)(b))(bbjs1)(05) (bj2 - - bps1)]y
= [80j(b2- .. bj-1)(bjbj+1)0; (bj2 - - bpr1)lp
= [B'bj(ba- .. bj—1bjbjsibjsa - bpi1)ojly

= [Bb;(b)o;l,

= H/B/bjb]]p
with £(8'b;) < £(B), since £(8b) = £((B'b;)ba;), giving £(8) = £((8'bj)o;). This contradicts
the choice of b as in Proposition [6.5.35] O

This concludes the proof of case and hence the proof of Point

6.5.38. Proof of Point Recall Point By If ¢(a) = £(5) = k + 1 then [a]o N [B]o C
C"(k).

PROPOSITION 6.5.39. Suppose a # 3 in A}. If £(a)) = £(B) = k + 1 then either [a]o N
[5Jo = 0 or [afo N [Blo € C"(K).

PROOF. Suppose [a]oN[B]o # 0. Then there exists a and b as defined in Definition
such that [aa], = [8b], for some 1 < p < n — 1. It follows that there exists some v in A
and u,v in A} such that

aa = yu and Bb = yv.
Suppose that u # e. Then by the proof of Point |A| case it follows that a facet of [a]o

containing [aa], is in C"(k), as it was under this hypothesis that we proved case ({i) (see
Remark [6.5.26). Hence [aa], = [Bb], itself is in C"(k). Similarly if v # e then a facet of [3]o
containing [5b], = [aa], is in C"(k), and hence [Bb], = [aa], itself is in C"(k). So we are
left with the case that u = v = e, giving

aa =y = (b

and since f(a) = £(pB) it follows that ¢(a) = ¢(b). Since a # [ it follows a # b. Recall
from Definition [6.5.22] there exists ¢ = ¢...¢p41 and from Lemma [6.5.23| ¢ = A(a,b) and
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¢ =da=Vb. Since £(a) = £(b) then ¢(a’) = £(V'). Suppose a’ = e, then {(a’) = (V') gives
b' = e and hence ¢ = a = b. But a # b so it follows that @’ # e and in particular ¢(a’) > 1.

From Lemma [4.3.11] since a and b are in EndMon,(aa) it follows that A(a,b) = ¢ is
in EndMon,(aa), so aa = o’c = o/(d’'a) for some o’ in A}, By cancellation of a we have
a=dad'd and (/) < ¢(a). Then

[aa], = [(o’a)aly
= [d/c]p

and [o/c], is in C"(k) since c represents a series of face maps originating at [a']o, with each

face map given by the map corresponding to left multiplication by c¢;, which is either the face
map corresponding to a; or b;. O

This completes the proof of [Bl and hence by Proposition it follows that ||CY| is
(n — 2) connected.

6.6. Proof of Theorem

6.6.1. Results on face and stabilisation maps. Recall the definition of the face maps
of A7 from Definition
8£:AZ—>AZ,1 for0<k<p
and given by
35 . AZ — AZ,l
oy : A:{\\Cg — A:{\\C;‘_l
where (9£ is induced by the face maps of CJ}, which are a composite of right multiplication of

the representative for the equivalence class in Cjf by (0n—p4kOn—pik—1---0n—p+1), before the
inclusion to the equivalence class in Cj ;.

LEMMA 6.6.2. The face maps 8 of A} are all homotopic to the zeroth face map &%.

PRrROOF. Recall from Lemma that for each 0 < p < n — 1 there is a homotopy
equivalence
AV A, = AT (m—p—1) =C},
with the map defined levelwise on the bar construction by

Bk(A;{,A:{_p_l,*) — AT(mn—p—1)

almy,...,mg] — @
where a € A, m; € Ai_p_l for all i and o = @B for @ € AT (n;n —p—1) and § € A:%L—p—l'
Define the map
B ATNAL AL, AT\ AT ) AL,
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to be the composition of two maps ¢, o ciz. The first map

dp AT\ AL AL = AP \AT AL,
is given by right multiplication of the central term in the double homotopy quotient by
(On—ptkOn—ptk—1---On—pt1). The set of (j, k)-simplices in Af \ Af / Az_p_l is given by
(A;,F)J X A7J1r X (A:'L_—p—l
a; and a are in A and @ are in A

)¥ and an element in this set is given by [a1, ..., ajlala], ..., a}] where

+

n—p—1- The map Ji acts on this simplex as

di([al, NN ,aj]a[all, ce ,CL;C]) = [CLl, con ,aj]a(an,p+kan,p+k,1 e Jn_p+1)[a/1, ce ,aﬂ

it fol-
+

n—p—1-°
Therefore the map on the central term of each simplex gives a map on the whole bi-semi-

and since (0p—ptkOn—pik—1---0n—pt+1) letterwise commutes with all words in A:_p_l,

lows that df commutes with all face maps of the bi-semi-simplicial set A\ A} / A

simplicial set, and hence its geometric realisation: the double homotopy quotient A\ A} /
A+

n—p—1- Lhe second map ¢, is given by the map

b AT \AT Ay, = AT\ AT AL,

induced by the inclusion A;t_p_l — A;{_p. Note here that dg satisfies Jg is the identity map,
and therefore dj = 1,. Then the diagram

AENAL AL, —— Arne
ay l or
AP\AL ) A, —= Ar\e

commutes for all p > 0. The map d} restricted to A\ A4} is A:{_p_l—equivariant, and so is

the identity map id AT\ AL Applying Proposition to these two maps therefore gives an
A;lpfl—equivariant homotopy between them. It follows that they induce homotopic maps dﬁ
and idAi\\Aﬁ//AI_p_l on At \ A} J AF . Applying the inclusion ¢, to both maps and the
homotopy gives a homotopy hy from dj, to ¢,. However v, is precisely the map dj), and thus hy,
is a homotopy from dﬁ to df; for all k. Then the image of hy under the homotopy equivalence

yields a homotopy from 9} to the zeroth face map 86“ , as required. O

LEMMA 6.6.3. Under the homotopy equivalence AZ ~ BA;:_]D_l of Lemma the
zeroth face map 9 Ay — AJ_y is mapped to the map s, : BA;t_p_1 — BAI_p induced by
the stabilisation map s : A:{_p_l s A:{fp.

PROOF. From Lemma Lemma [6.4.3| and the proof of the previous Lemma [6.6.2| we
have the following
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BA, p 1 pr AFN\NAT AL = A\ Cr
BAnfp fil A:zr \\ A’rt // Ajz_fp = A;Lr \\ C;L—l

where the map from the centre to the left is given on the (j, k)-simplices of the geometric
realisation by

f( (A+\\A+//Anp1)( k) ( //Anpl)
[a1,...,aj]alal, ..., a;] — x[d}, ..., a}]

where a and a; are in A and d/ is in A7 The map d}) is the map

n—p—1-°
Ay AN\ AL ALY AT\ AL )AL

induced by the inclusion AZ—p—l — A:[_p. Restricting this map to (j, k)-simplices of the
double homotopy quotient gives

(dp)(jk (A+ \\A+ //An —p— 1)(] k) (A;zi_ \\A://A;li;p)(],k)
la1,...,ajlalay,...,a;] — |a1,...,ajlalal, ..., az)

where a and a; are in A and @} isin A p—1, hence aj is in A;{_p. Applying this map before

the homotopy equivalence to the classifying space gives

(d5) (j.k)

(ATNAT AT, D —— AN AT S AT )G

n—p—1

4 —1
fG.m G

(= ) Ag_p 1k (/) Aj_pn

+ +
BATL —p— 1 > BA’I’L
and on a (7, k) simplex this map is given by
() 5,k
lai,...,ajlalal,. .., a}) —————[a1,...,qajlala}, ..., a}]
e TG
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We note that the dotted map is precisely the map which defines the natural inclusion
BA} | — BAJ_, under the identification of % / A with BA} for all r. The natural

inclusion is in turn induced by the stabilisation map Aff SN A;LH and so we denote it s,.
Therefore under the homotopy equivalence between the classifying space and the double ho-
motopy quotient, dg is equivalent to s,. From the proof of the previous lemma, under the
homotopy equivalence between the double homotopy quotient and C; for each p, df is the

map induced by 9} and therefore it follows that 9% is equivalent to s, under the homotopy

+

equivalences C’g ~ BAn_p_1 for each p. O

6.6.4. Spectral sequence argument. In this section we run first a quadrant spectral
sequence for filtration of || A7, as in [41], 2 (sSS)]. Recall the four points we proved regarding
IAL]:

(1) A? is built out of spaces A} for p > 0

(2) there exist homotopy equivalences A} ~ BAT*HF1 forp >0

(3) there is a map from the geometric realisation of A7 to the classifying space BA;,
which we call ||@s||

Az ' B
(4) ||@e|l is (n — 1) connected, i.e. it is an isomorphism on homotopy groups m, for
0 <r < (n—2), and a surjection for r = (n — 1).

The first quadrant spectral sequence of the filtration of ||.A7|| satisfies
Eli,l = Hi(Ag) = Hena([JAJ])-

By point the left hand side is given by E,i’l = H)(A}) = H(BA' , ). The first page of
the spectral sequence is therefore as in Figure |3| By points and the highly connected
map ||pe|| gives that the right hand side satisfies

Hi (|| AY]) = Hipi(BAY) when (k+1)<n—1
Hy (| A]]) — Hi(BAY)  when (k+1) =n— 1.

The differential d' is given by an alternating sum of face maps in A7. By Corollary the
face maps are all homotopic to each other and by Lemma [6.6.3] they are all homotopic to the
stabilisation map s., via the homotopy equivalence A} ~ BAI_p_l.
sum of face maps in the differential d' will cancel out to give the zero map when there are an

Therefore the alternating

even number of terms, and will give the stabilisation map when there are an odd number of

terms, i.e.
dt: Eéven’l — Ecl)dd,l odd number of terms, so equals the stabilisation map s
d': Eédd’l — Eéven’l even number of terms, so equals the zero map 0

which gives the E' page as shown in Figure
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3| H3(BA,_ ) <£H3(BA:[72) <d_1H3(BA:573)

2| Ho(BAS ) <d—1H2(BA?zL—2) £H2<BAI_3>

1| Hi(BA;_ ) & Hy(BA,_,) & Hi(BA,_3)

0| Ho(BAL,) <& Ho(BAT,) <= Hy(BAT,)
0 1 2

FIGURE 3. The E! page of the spectral sequence.

3| Hs(BA ) <& Hy(BA® ,) & Hy(BAF ) & ..
2| Hy(BA ) <& Hy(BAF ) & Hy(BAF ) & -
1| H(BAS ) & H(BA:,) & H(BA: ) &

0 Sk
0| Ho(BAS |) <+ Ho(BAS ,) <= Ho(BA ;) + -

0 1 2

FIGURE 4. The E' page of the spectral sequence, with differentials filled in.

We proceed by induction, assuming that homological stability holds for previous groups
in the sequence, i.e. the map induced on homology by the stabilisation map s,

H;(BA; |) — H;(BAY)

is an isomorphism for k > 2¢ and is a surjection for k = 2i whenever k < n.
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Here we note that the result holds for the base case n = 1, since we have to check Ho(BAf) —
Ho(BAY) is a surjection, which is true since BA; is connected for all n, and so in fact

Hy(BA{) — Ho(BAYT) is an isomorphism.
LEMMA 6.6.5. Under the inductive hypothesis, the spectral sequence satisfies that the Eq;
terms stabilise on the E' page for 21 < n, i.e.
E&l = Eg; when 2l <n.

In particular the d* differential does not alter these groups, and all possible sources of differ-
entials mapping to Eg; for 21 < n are trivial from the E? page.

PROOF. The d! differentials are given by either the zero map or the stabilisation map as
shown in Figure 4l The d' differentials

dl . E(%J — Ell,l
are given by the zero map, and the Elll terms are zero, due to the fact that this is a first
quadrant spectral sequence. This gives that the E&l terms are equal to the Eé,z terms.
To show that the sources of all other differentials to Ey; for 21 < n are zero, we invoke
the inductive hypothesis. This gives that the stabilisation maps, or d' differentials going from

even to odd columns are isomorphisms on the E' page, in the interior of the triangle of height

| 5] and base n, and surjections on the diagonal. Since the d' differentials going from the odd

to the even columns are zero, it follows that all terms in this triangle are zero on the E? page,
except the ones on the zero column. These groups are precisely the sources of differentials to
Ey, for 21 < n. O

We are now in a position to prove the desired result.

THEOREM 6.6.6. The sequence of monoids A" satisfies homological stability, that is
Hi(BA}_) = Hi(BA;)
when 2i < n, and the map H;(BA}_|) — H;(BA)) is surjective when 2i = n.
PRrROOF. From Lemma the spectral sequence satisfies
Eg = Eé,i = Hi(BA,_,)
when 2¢ < n. From Proposition and Theorem [6.5.1
Hi(|| A7) = Hi(BAy)

when i < n — 2, and the map H;(||AY]|) — H;(BA}) is onto when i = n — 1. The spectral
sequence abuts to Hy;(|[A¢]|) and from Lemma the only non zero groups on the diagonal
Ep when k 4 [ = i are the groups Eg5. Putting these results together we get

Hi(BA,_,) = Eg5 = Hivo(||AJ]]) = Hi(BA})
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when both ¢ < § and i < n — 2 are satisfied. When n > 2,7 < 5 implies ¢ < n — 2 and the
case n = 1 was handled as the base case of the inductive hypothesis. Therefore we have that
an isomorphism is induced when 2i < n.

When i <n — 1 and i < § we have

Hi(BAY_,) = Eg5 = Hivo(||AJ]]) — Hi(BAY)

and for n > 2, i < 5 implies ¢ < n — 1. Again the case n = 1 was handled as the base
case of the inductive hypothesis. This gives the required range for the surjection, and hence
completes the proof. O



APPENDIX A

Python calculations

A.1. Code

Below is pseudo-code for the Python code used in Chapter [2] which uses the program
PyCox by Geck [26], and requires the PyCox Python file chv.py. It is followed by some
example calculations, which are referred to in the text. Many thanks to Edmund Howse, who
showed me how to use PyCox and provided example code and computations for me to work
from. The code file can be found on my (current) web-page.

e cosetreps(W,I): Given a Coxeter group W and a subset of its simple reflections I
returns a list of all distinguished right coset representatives of Wy in W.

e leftcosetreps(W, I): Given a Coxeter group W and a subset of its simple reflections
I returns a list of all distinguished left coset representatives of Wy in W.

e cosetlengths(W, I): Given a Coxeter group W and a subset of its simple reflections
I, returns the length of the distinguished right coset representatives of Wy in I as a
list.

e leftDS(W, X): Given a Coxeter group W and X a set of words in W, returns the
left descent set in W for each word in X, in a list.

e intersect(a,b): Returns the intersection of two lists a and b.

e collapse(W, I, w): Given a Coxeter group W, a subset of its simple reflections I and
a simple reflection w in W, computes the following:

— X: distinguished right coset representatives of I in W
— R: reduced words representing right multiplication of the words in list X by w
— Y the left decent set (generators the word can start in) of the words in list R
— Z: the intersection of each entry of the list Y with [
— L: the length of the coset representatives in list X
— S the length modulo 2 of the coset representatives in list X
— A: a pair for each non-empty entry of Z, containing the entry of Z and the
corresponding entry of S.
Returns A, the data for the transfer and collapse map on generator corresponding
to w, for subgroup corresponding to I.
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e paritycosetreps(W, I): Given a Coxeter group W and a subset of the simple reflec-
tions I, returns the number of distinguished coset representatives which have even
length and the number of distinguished coset representatives which have odd length.

e conjugateandlengths(W, I, w): Given a Coxeter group W, a subset of its simple
reflections I and a simple reflection w, computes the conjugate of w by all distin-
guished coset representatives of Wy in W. Returns the conjugates which reduce to a
simple generator of W, and the corresponding length modulo 2 of the conjugator.

Examples

This section consists of examples for all cases in the thesis for which we use the above
Python code.

ExaMPLE A.1 (For proof of Proposition [2.5.29 and Lemma [2.5.44]). This example shows
the code for the transfer and collapse map being used when Wy is W(As3):

*—0o—0

s t u
and we consider the transfer from H;(Wr;Zr) = Zs = (o) which has generator
a=01aT)—1aTly).
When I = {s,t}, our input to the Python module and the corresponding output is

>>> W = coxeter (7A” ,3)
>>> collapse (W,[0,1],0)

[(fo], 0), (0], 1)]
>>> collapse (W,[0,1],1)
[

(1], o), (fo], 1)

The first line of input sets the Coxeter group to be the inbuilt group W (As) where generators
s,t,u in the diagram are labelled 0, 1,2 respectively. The second line of input computes the
transfer and collapse map of (1 ® I'y), specified by the 0 in the third entry (corresponding
to s). This is with respect to the subgroup generated by 0 and 1 (s and t) in the full group
W. The output, [([0],0), ([0],1)], is a list of pairs, the first entry in each pair corresponds
to a generator and the second entry to its sign: 1 for negative and 0 for positive. So ([0],0)
corresponds to +(1 ® I's) and ([0],1) to —(1 ® I'y). The third line of input computes the
transfer and collapse map in the same way for (1 ® I'y), hence the 1 in the third input entry.
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Putting these together we get:

a = (1el)->1eTIy)
G318 e ar) — (Y 187 @ ALy
gewr BewT
i (lely—-1al) -1l -1aTy)

as given in the proof of Proposition [2.5.29

ExamMpLE A.2 (For proof of Lemma [2.5.55). We recall the formula for dx(e(I')) from

Equation .
le@) = > > > (=)0 ge(T)

>l rely ri\{r}
- 7 W 7
P> S
BT 1 BCT\{T}

For the groups W (Bs) and W (H3) in Lemma [2.5.55| the 64(I's ¢ 4s) computation is given by:

54(Fs,t,u:)s) = Z Z Z (_1)a(r7i’776)66(rl)'

=12 7€l /BGWIITZ\{T}
BT 1 BCT\{r}

We use our ‘conjugateandlengths’ function to compute the distinguished coset representatives
of a 2-generator subgroup Wy for I C {s,¢,u} and the conjugates of an element of {s,t,u} by
these representatives. If this conjugate is in {s,t,u}, the length modulo 2 of the conjugator
is recorded. For instance when the group is W (Bs)

.i.—.

5 ¢t u
and the 2-generator subgroup is generated by I = {s,¢} with the element of {s,¢,u} being s,
we input the following code:

>>> W = coxeter ("B” ,3)
>>> conjugateandlengths (W,[0,1],0)

([0}, 0), (fo], 1), ([0}, 0), ([0o], 1)].

The output tells us that four coset representatives for W; in W conjugate s to a generator
of Bs. The first entry in each pair tells us this generator, and the second entry tells us the
length modulo 2 of the corresponding coset representative. This corresponds to the sign of
the coefficient, since it relies on the length (the sign is 41 if even length and —1 if odd length).
In our example we see that four coset representatives conjugate s to itself, but there are two



EXAMPLES 154

with even length and two with odd length. Therefore upon tensoring with Z over W (Bs) in
the proof of Lemma [2.5.55] the terms relating to these coset representatives will cancel out.



APPENDIX B

Calculations for Section 2.5

This Appendix contains proofs and calculations used in Section The majority of
these calculations compute twisted homology of finite Coxeter groups, using the De Concini
- Salvetti resolution.

Proor orF EXAMPLE [2.5.5l Here differentials for flags containing only one generator are
computed as in Example and the other differentials are computed as follows.
We recall the formula for 6;(e(T")) from Equation (). The differential d5(T's;) is given by:

BT = S5 3 (-1 pe(r)

=1 T7=s,t ,BEW[I:,Z'\{T}
1

_ Z (—1)“(F’1’S’B)5Ft+ Z (_l)a(F,l,t,B)Brs

,BEth BEW;t

s

3

(s,t)—1 m(s,t)—1

= Z (_1)O‘(Fr1"5»p(‘97t;]))])($7 t,])rt _|_ Z (_1)01(F,1,t,p(t,s;g))p(t, S; g)FS
7=0 g=0

st)—1 m(s,t)—1

= (=) (s, 5 )T+ > (=1)72p(t, 5;9)T

J

~

m

—~

g=0

where we recall that we define p(s,t;7) to be the alternating product of s and ¢ of length
j, ending in an s (as opposed to 7(s,;j) which is the alternating product starting in an s)
e.g. p(s,t;3) = sts, p(s,t;4) = tsts, and compute (I, 1, 7, 3) as follows:

0
a(Ter1,8,p(s,t5) = 1U(p(s,t;5)) + > [Tkl + p({s,t}, 5)
k=1
= j+0+1
= j+1
0
a(Tsr, 1, tp(t, s39)) = LU(p(t,559) + > Tkl + u({s, t},5)
k=1
= g+0+2
= g—+2.
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The differential d3(I's ;~5) is given by:

03(Tapns) = 3. > > (—rimge(r)

=12 7€l Bewlf:\{"'}
B 41 BCT\ {7}

_ Z Z (_1)a(F,1,T,B)B€(F/) + Z (_1)05(1",2,3,5)56(11/)

s,t T} =e,s
Te{s,t} 5€W{{S‘t}}\{ Jé]
B s s tI\ {7}
(1)o@ LB BT )+ (—1)3T sy +(—1)%s s m(s,t) even
B=e,p(t,s;m(s,t)—1)
= > () TLEA B )+ > (—D)a-L=B) gryy)
B=e B=p(s,t;m(s,t)—1) m(s,t) odd

+(*1)3Fst+(7l)ssrst

(—1)2Ts5 s+ (=)Dt sim(s,6)—1)Dsns+(—1)3Tse+(—1)5sTse  m(s,t) even
(=12 555+ (=1)™EDp(s,tim(s,t) = 1Tt +(—1)3Tse+(—1)%sTs m(s,t) odd

~ JTsos = p(t,ssm(s,t) = Dlsos — Tse — st m(s,t) even
Lsos — p(s,t;m(s,t) — DIy — T — sTse - m(s,t) odd

and we compute (I 55,4, 7, ) as follows

0
OZ(F5¢33, 17t7 6) = 1-0+ Z |Fk| + #({S’t}’t)
k=1
= 04+04+2
= 2
0
a(Tsins, Lt pt,sym(s,t) = 1)) = 1-(m(s,t) = 1)+ Y Tkl + u({s, 1}, )
k=1

= (m(s,t)—1)+0+2
= (m(s,t)—1)+2

0

a(Tsios, 1,8, p(s, t;m(s,t) — 1)) = 1-(m(s,t)—1)+ Z Tkl + n({s,t},s)
k=1

= (m(s,t)—1)4+0+1
= m(s,t)
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1
ALsios,2,8,¢) = 20(e) + Y [Tl + p({s}, s)
k=1

= 0+2+1
= 3

1
a(rs,t38727373) = 26(3)+Z‘Fk’+:u'({8}73)
k=1
= 24241

= 5.

Similarly the differential for d3(I's 1~¢) is given by:

53(Tatnt) = . > > (—rmge(r)

=127€N et )
BT 41 8CT\ {7}

_ Z Z (—1)Q(F’I’T”8)ﬁ6(rl) + Z (_1)a(1",2,t,,8)56(1ﬂ/)

Te{s,t {s;t}\{7} B=e,t
{ } 5QW{S¢}
BrBC st \{r}
(=) 10454+ (—1)" D p(s,tm(s,t)—1)Teoe4-(—1)3Cse+(—1)%¢ g m(s,t) even
(=D Tine+(=1)™EDHp(t,s5m(s,t) = 1)Ts55+(—1)Tse+(—1)%Tse m(s;t) odd

(=1 +p(s,tym(s,t) = 1)Tine — (L +8)Tse m(s,t) even
_FtDt + p(t, 55 m(37 t) - 1)F535 - (1 + t)Fst m(s, t) odd

and we compute oI 55,4, 7, ) as follows

0
aTsis1,s€) = 1-04 > [Tl + p({s,t}, s)
k=1
= 0404140
=1
0
a(rs,tjta 1737p(87t§m(37t) - 1)) = 1 (m(s,t) - 1) + Z ‘Pk’ + :U’({S?t}ﬂ S)
k=1

= (m(s,t)=1)+0+1
= m(s,t)
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a(rs,t3t7 ]-7 tap(tv S; m(57 t) - ]‘))

a(rs,tDt? 27 ta 6)

ol 2,t,t) =

158
0
=1 (s ) = 1)+ 3 I+ ({81, )
k=1
= (m(s,t)—1)+0+2
= m(s,t)+1
1
26(e) + 37 Tl + u({th, 1)
k=1
0+2+1
3
1
26(t) + 3 [Tl + ({2}, )
k=1
24+2+1
O.
U

PROOF OF LEMMA 2.5.79. We compute using the De Concini resolution. From Example

[2.5.6] we have:
[ [ é
7 ® Cs i 7Z ® Cy l 70 —=7® C
Ws Ws W Wy
Generators:
1® PSDSDS 1® FSDS 1® Fs 1® FQ)
Differentials: 1T —— —2(1®TYy)

1@l ———0

1 & FstDs 1 & _2(1 & FSDS)

Computing Ho(Wy;Zy) = ll(frf((gj))

gives Zs, generated by 1 ® I's~;. O

Proor oF LEMMA [2.5.20] We compute using the De Concini-Salvetti resolution. From

Example we have:
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Z & Cy & Z & Cy & Z & C
Wr Wr Wr
Generators:
1® 55508 1®Tsos 1®Ts
1@ Liseot 1® e R
1® 155 1®Ts
1@ ¢
Differentials: 1®@Tsost 0
1® Lot 0
1@yt m(s,t)(—(1®Ty) + (1@ Ty))
1@ g0 ! —2(1®Tsos)
1@t —2(1®T~)
21 ® Isos) if m(s,t) even

1D —
@ Lstos 1 @Tyns — 1®Tymp  if m(s, ) odd
—2(1® o) if m(s,t) even

1T —
® Lot —1@T+1®@Tsos  if m(s,t) odd

The kernel of §, is generated by 1 ® I's5s and 1 ® I';5;. Modding out by the image of d3 gives
that both of these generators have order two, and when m(s,t) is odd they are identified.
This completes the proof. O

ProoF oF LEMMA 25271 We apply the transfer map as defined in Proposition [2.3.15
to the generator(s) of Ha(Wy,4y;Z7) and then the degree two collapse map fo as computed
in Section 2.5.8

For m(s,t) even, consider this map on the generators 1 ® I's55 and 1 ® 'y~ of
HQ(W{S’t}; Zr) = Zs ® Zs in turn, restricted to the summand Hy(Ws;Zs) in the image:

d* _
1Ty~ — Z 13 ! ® Bl s~s
pew
m(s,t)—1

= Y ('@t sy

=0
'g 1®F535_1®F535
= 0.
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When applying the collapse map fo above, we note that 7 (¢, s;1)s is (W, §)-reduced provided
I ¢ {0,m(s,t) — 1} and 7 (t,s;m(s,t) — 1)s = w(s,t;m(s,t)) which may be written such that
it begins with s. Similarly:

1@Ts & 3 157 @Al
BeWT
m(s,t)—1
= Y (D' et s)Tin

=0

LESY

where the final equality is due to the fact that w(¢,s;1)t is (W, 0)-reduced for all 0 < [ <
m(s,t) — 1.

Similarly both generators are mapped to zero when restricted to the Ho(Wy;Z¢) = Zo
summand in the image.

For m(s,t) odd we have by similar methods the generator 1@ T4~ of HQ(W{&t}; Zr) = 7o
is mapped as follows:

1® FSDS 'd_l> Z 16_1 ® BFSDS
BeWT
m(s,t)—1
= Z (_1)l ®F(t73;l)Pst

=0
B er,.-,

When applying the collapse map fo we note that 7 (¢, s;1)s is now (W, 0)-reduced provided
I # 0. Therefore 1 ® I's5s is mapped to the generator of Ho(Wy;Zs) = Zz. Similarly,
since 1 ® I'sos is identified with 1 ® [y in Ha(Wisy;Z7) = Za, when restricted to the
Hy(Wy; Zy) = Zo summand in the image, the generator of Ha (Wi, 4y; Zr) = Zs2 is also mapped
to the generator of Ho(Wi;Zt) = Zo. This completes the proof. O

PROOF OF PROPOSITION [2.5.24] The twisted resolution for a general Coxeter group with

3 generators, up to degree two, follows from the calculations in Example and is given
below:



B. CALCULATIONS FOR SECTION

Z @ C, & Z® C & Z & Cy
Wr Wr Wr
Generators:
1® Do 1T 1y
1® Tyt 1® Iy
1@ Lyoy 1@y
1® g
1@y
1®Tsy
Differentials: 1@t —2(1®7Ty)
1®Ty —2(1®Ty)
1T, —2(1® Ty)
1@t 0
1@ yogt 0
1@ Tyuou ! 0

1@l ———m(s,t) (1) — (1eTy))
1@, ———mtu)(1oTy) — (1®T1y))
10Ty —————=m(s,u)(1®T) —(1®Ty,))
The kernel of ¢; is therefore generated by
a=(1eTl)-(1al)and f=(10T,) - (1®I)
and the relations given by the image of o are:
m(s,t)a =0, m(s,u)8 =0, and m(t,u)(8 — a) = 0.

Applying this to the groups in question gives:
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e For WT = W(Ag):
3a=0,268=0, and 3(f — ) =

=360 =
=0 =0

which gives Hy(Wrp;Zr) = Z3 generated by «.
e For WT = W(Bg)

40 =10,28=0, and 3(f—«a) = 0
= 3a = -3p3
>a = 0

which gives Hy(Wr;Zr) = Zy generated by o = 5.
e For WT = W(Hg):

5a=0,28=0, and 3(6—a) = 0

= —-3a = -308
=20 = [
=4a = 20 =

=a = 0
=38 = 0
=06 =0

which gives Hy (Wp;Zr) = 0.
e For WT = W(Ig(p)) X W(Al):
pa=0,26=0, and 2(8 —a) =
= 2a =
This gives
Zo ® L if t) i
Hy (Wi Zg) = 2 ® Zo 1 m(s,t) Ts even
Zo if m(s,t) is odd
with generators o and [ in the even case, and § in the odd case.

g

Proor orF ProproSITION [2.5.25] Consider the twisted resolution of this group from Ex-
ample
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Z % C, » Z % C & Z & Cy
Wr Wr Wr
Generators:
1® g5 1®T; 1oLy
1® Tyt 1Ty
1@
Differentials: 1@t —2(1®Ty)
1®Ty —2(1®Ty)
1@ ot 0
1® ot 0

18 Ty —— m(s,)(1®T,) - (1O )

Computing the kernel of §; gives generator v =11y — 1 ®I'y, and the image of Jo gives the
relation m(s,t)y = 0. This completes the proof.
O

PROOF OF PROPOSITION [2.5.29. For the finite groups with generating set of size two,
the target of the d! differential is 0, and so d' is the zero map.

For each of the finite groups with generating set 7' = {s,t,u}, we apply the transfer
and collapse map for each two generator subgroup in turn. This can be calculated by hand,
but we do this using Python and the PyCox package [26] for the cases Wy = W(A3) and
Wr = W(Bs). The code (given in Appendix takes as input a Coxeter group Wrp, I a
subset of T" and w an element of T'. It returns the image of 1 ® I',, under the transfer and
collapse map from Hy(Wr;Zr) to Hi(W,Z1). A sample example of the code in use is included
in Example The maps are given on the 3-generator subgroups as follows, where below
we consider the transfer and collapse map to the three 2-generator subgroups: I = {s,t},
I = {s,u} and I = {t,u}. For Wpr = W(Iz(p)) x W (A1) we calculate the differential and
collapse by hand.

o Wpr =W (A3) with diagram oo o
s ¢t u
H(Wr;Zr) = Zs = (o) has generator o = (1@ T's) — (1 @ Ty).
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— I ={s,t}

(1®Ts)— (1Y)
(Y 157 @pry) — () 187 ®ph)

Bewr Bewr

I=

Iz

1T, -1aT,) -1l -1®Ty)
1®Fs_1®rta

so the image of the generator of Hy(Wrp;Zr) is the generator of
H1<W[;Z[) =73 = <1 R —1® Ft>.
— I ={s,u}

(1oT,) - (1eT)
(3 187 @pr)— (Y 187 @ ALy

BeWr Bewr

I

=

1eT+10T,) - (1T, +1xTy)
0,

so the image of the generator of Hy(Wrp;Zr) is 0.
— I ={t,u}

1®T) - (1eT)
(Y 157 epr) — (Y 187 @pry)

Bewr Bewr

I=

Iz

1T —19) - (10T —1®Ty)
19T, —1®Ty,

so the image of the generator of Hi(Wyp;Zy) is minus the generator of
Hi(WpZp) =Zs = (12T —1@1Ty).

o Wp = W (B3) with diagram g_4_¥_&

Hy(Wrp;Zr) = Zy = () has generator a = (1 T'g) — (1 @ T).
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— I ={s,t}

(1eTy) —(1aTy)
(>, 187 @Bl — () 157 @8y

BeW}F BeWF

=1

I~

0,

so the image of the generator of Hy(Wrp;Zr) is 0.
— I ={s,u}

1eT) — (1Y)
(Y 157 @ply) — () 187 el

Bewr Bewr

I~

=

0,

so the image of the generator of Hy(Wr;Zr) is 0.
- I= {ta U}

(1®Ts) — (1aTy)
(Y 187 '@l () 187 ® a0y

Bewr Bewr

I= 1

I+

0)-(10 —190, - 1T +1®T,)
0,

so the image of the generator of Hy(Wrp;Zr) is 0.

o Wr =W (H3) with diagram gj_?_ﬁ

Hy(Wrp;Z7) = 0 and so the transfer and collapse map is zero.

o Wr =W(l2(p)) x W(A;) with diagram gﬁz .

When pis even, Hi(Wr; Zr) = Zo®Zs with generators a = (1&I;)—(1®I%) and 8 =
(1®Ts) — (1®TIy,). The transfer and collapse maps for each subgroup are therefore:



— I ={s,t}

I

I=

I=

=
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1aT,)—- 1Ty

(Y 187 @pry) - () 187 @ ATy
gewrl BewT
(1®F5—1®UF3)—(1®Ft—1®UFt)
0,

(1®T,)—(1®T,)

(>, 187 @pl)— () 157 ®pTy)
Bewrl BewT
(Iely—1euly)— (1T, —1®uly)
1T —-1®T,) —(0)

0,

so the image of either generator of Hy(Wr;Zr) is 0.

— I ={s,u}

(1QT,)— (10T
(>, 187 @ply)— () 157 ey

Bewr Bewr
p—1

O (D' @w(t,s; D)) = (1) @7 (t, 5:)T)

=0

1T+ (-1)P ' 1®Ts) -0

0,
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B = (1®Ps)_(1®ru)

53 187 epr) (Y 187 @ ATy
pewf BeW]
p—1

= > ((-D'@n(t,s;)ls — (1) @ 7(t, 5;1)T)
=

1 0 p—l

L1+ ()P tael) - S (1) Ty,

=0
- 0

Here applying f1, we note that (¢, s;1)s is (I, ))-reduced for I # 0,p—1, w(t, s; 1)t
is (I, 0)-reduced for all 0 <[ < p—1 and 7 (¢, s;)u = u(w(t,s;1)) for all 0 <1 <
p — 1. So the image of either generator of Hy(Wrp;Zy) is 0.
— I ={t,u}

This case is symmetric to the case I = {s,u} and so the image of either generator
Of Hl(WT; ZT) is 0.

When p is odd, Hy(Wrp;Zr) = Za with generator f = (1®T's) — (1®TIy,). The

transfer and collapse maps for each subgroup are therefore:

— I ={s,t}
/3 = (1®Fs)_(l®ru)
G318 epr) (Y 187 @A)
gewl BewT

lely—1euly)— 1T, —1®uly)

(1®F8—1®F5)—<0)
= 0,

I=

so the image of the generator of Hy(Wyp;Zr) is 0.



B. CALCULATIONS FOR SECTION 168

— I ={s,u}
B = (1®Fs)*(1®ru)
LY 1t esr) (Y 157 @)
6EWIT BGWIT
p—1
= > (-D'@n(t,s;)s — (1) @ 7(t, 5;1)T)
1=0
1 p—1
Lo1er, - (-1n'er,
1=0
= 1®I's—1x7,.

Here applying f1, we note that (¢, s;1)s is (I, 0)-reduced for [ # 0 and
m(t,s;l)u = u(mw(t,s;1)) for all 0 <[ < p— 1. So the image of the generator of
Hy(Wr;Zr) is the generator of Hy(Wr;Zr) = Zs since m(s,u) = 2.

— I ={t,u}
This case is symmetric to the case I = {s,u} and so the image of the generator
of Hi(Wr;Zr) is the generator of Hy(Wr; Zr) = Zg since m(t,u) = 2.

PrOOF OF LEMMA 2540l The E? page for the Coxeter group W (A,) is given by

0 1 2 3 4

We have the following diagrams for W = W (Ay):
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Dy : o—e—eo—e Doga = Dw

Da, : {s,u} e—eo—e{t,v} Da, : {s,t} o—e—e{u,v}
{s, v} {t,u
Das: {s,t,u}e—e{t,u,v} Doy = Das
and D _ ., is the empty diagram. Computing the terms in the spectral sequence as defined

at the start of this section therefore gives:

Ho(Doda; o) = Zo

Ho(Deo; Z2) © Ho(Day; Z3) & (@ Zin(sy))
m(s,t)>3,700

= Zo®Z3®0
= Zo®Zs

ZQ) D Ho(DA3; Zg) & (W(HEB)CWZQ)
w(By W

H\(D5; Zs) ® Ho(D

even
—s

= 0p0PZy®O0

ProoF oF LEMMA 2.5.43] The twisted resolution for a finite Coxeter group with 4 gen-
erators, up to degree two, easily follows from the calculations in Example and is as
follows, where in the diagram below = € {s,t,u,v}:
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Z® Cy - Z® C i Z  Co
Wr Wr Wr
Generators:
1®Isoe 1T, 1® Ty
1@l
1®Ty
1@y
1®Tsu
1® D,
1® Ty,
Differentials: 1@y —2(1®Ty)
1@ Tyt 0
1T ———=m(s,t)(1@Ts) — (1®1I}))
1@y ——m(tu)(1eT) —(1eTy))
1@ Ty ———=m(u,v)(1 &) = (1&T,))
L& Ty mls,u) (18 Ty) — (18 T,)
18T, m(s,0)(18T,) — (1©T,))
1Ty ————m(t,v)(1®T:) — (1®Ty,))
The kernel of d is therefore generated by
a = (1ely)-1ely,
B = (1al) - (1T,
7 o= (1el) - (1aly),
and the relations given by the image of d3 are:
m(s,t)a = 0 m(t,u)(f — a) 0
m(s,u)f = 0 m(t,v)(y—a) = 0
m(s,v)y = 0 mw,v)(y—B) = 0.

Applying this to the groups in question gives:
o For W = W (Ay):
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3. = 0 3f—a) = 0

286 = 0 2y—a) = 0

2y = 0 3(v=8) = 0
which gives Hy (Wyp; Zr) = 0.

For WT = W(B4)

4o = 0 3(8—a) 0 = f—a =0 = 3
28 = 0 2y—a) = 0
2y =0 3(y=6) =0 = 7=8 =0 = 1y
which gives Hy (Wp;Zr) = Zs generated by a = 8 = .
For WT = W(H4)
3—a) = 0 = -2 = 0 = 0
o = 0
2% — 0 = 4o = 0 = « 0 = g
9 — 0 2y—a) = 0
3(v=8) = 0 = vy =0
which gives Hy(Wrp;Zr) = 0.
For WT = W(F4):
3 = 0 4-a) = 0 = 4da = 0 = a =
26 = 0 2y—a) = 0 = 2v =0
2y = 0 3v=p8 =0 = v =58
which gives Hy (Wp; Zr) = Zs generated by § = 7.
For WT = W(D4)
20 = 0 3f—a) = 0 =a = 0
38 = 0 2y—a) = 0
2y = 0 3(v=68) = 0 =y =0
which gives Hy (Wp; Zr) = Z3 generated by S.
For W = W (I2(p)) x W(I2(q)):
pa = 0 2(8 — ) 0 =2a = 0
26 = 0 2y—a) = 0
2y = 0 q(v — B) 0
This gives
Zo ® Zo ® Zo if p and q are both even
Hy (W Zp) = Lo @ Zo %fp?s odd andqi.s even
Zo @ 7o if p is even and ¢ is odd
Zo if p and ¢ are both odd

3p

—2a =
3y

R
LU
20 ™
I

o o O

2

171
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with generators a when p even and 3, v when ¢ even, with v = 8 when ¢ odd and
a = 0 when p odd.

When we have the product of a finite group with 3 generators and W (A;), the generators and
relations become as follows:

m(s,t)a = 0 m(t,u)(8 — ) 0
m(s,u)f = 0 2y—a) = 0 = 20 = 0
2y = 0 2y—B) = 0 = 28 = 0

so given the generators and relations in the first homology of the 3-generator subgroup we
can calculate the homology of the product with W (A;) by:

e adding an extra Zs summand generated by ~

e adding the relations 2a = 0 and 28=0.

Applying this to the 3 generator groups from Proposition gives the following results:

o For Wp = W(As) x W(A1): Hi(W(A3);Zr) = Zs generated by a. Adding the Zs
summand generated by v and the relation 2o = 0 gives Hy(Wrp; Z7) = Zo generated
by 7.

o For Wr = W(Bs) x W(Ay): Hi(Bs;Zr) = Zs generated by a = 5. Adding the Zy
summand generated by v and the relations 2a = 25 = 0 gives Hi(Wrp; Zr) = Zo® Zo
generated by o = 3 and .

o For Wpr = W(H3)xW(A1): H(W(Hs); Zr) = 0. Adding the Zy summand generated
by v gives Hi(Wr;Zr) = Zy generated by 7.

O

PROOF OF LEMMA 2.5.44] For each possible 4 generator subgroup Wr, we let I cycle
through the subsets of T' of size 3 and consider transfer and collapse maps from Wy to Wi:
o For Wr =W (A4): Hi(Wr;Zr) =0, so all maps are zero.
e For Wy = W(By): Hi(Wrp;Zr) = Zs generated by a = 3 = 7.

— I ={s,t,u}
a = (1aol)-1xTIy)
G318 esr) - (Y 187 e pny)
gewT BeWT
Lo

— I ={s,t,v} Similarly, « — 0.

— I = {s,u,v} Similarly, o — 0.

— I = {t,u,v} Similarly, a — 0.
o For Wr =W (H4): Hi(Wr;Zr) = 0 so all maps are zero.
o For Wy = W(Fy): Hi(Wp;Zr) = Zs generated by § = ~.
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— I ={s,t,u}
B = (1eT) - (1aTy)
G315 epr) - (Y 187 @ AL
BewWF Bewr
oo

— I ={s,t,v} Similarly, 5+ 0.
— I = {s,u,v} Similarly, g~ 0.
— I = {t,u,v} Similarly, 5+ 0.
e For Wy = W(Dy): Hi(Wrp;Zr) = Zs generated by .
— I ={s,t,u}

B = (1®Fs)_(l®ru)
G318 epr) - (Y 187 @A)

BeWr BeWr

1
L 0-(2uer,)-1er)-1aTy)
= 1@ +100 —2(1®TY)

The generator for Hy(Wy;Zr) = Zs when I = {s,t,u} is (1® s —1®7T,) and
in this homology group (1 ® I's — 1 ® I';) is identified with zero. Therefore the
generator for Hy(Wr;Zr) gets mapped to 2 times the generator of Hy(Wr;Zr)
when I = {s,t,u}.

— I = {s,t,v} In this case a similar computation gives « > 0.

— I = {s,u,v} This case is symmetric to that of I = {s,t,u}. Therefore the
generator for Hy(Wrp;Zr) gets mapped to 2 times the generator of Hy(W7r;Zr)
when I = {s,u,v}.

— I = {t,u,v} This case is symmetric to that of I = {s,t,u}. Therefore the
generator for Hy(Wrp;Zr) gets mapped to 2 times the generator of Hy(W7r;Zr)
when I = {t,u,v}.

e For WT = W(Ig(p)) X W(IQ((]))Z

Zo ® Zo ® Zo if p and q are both even
Lo ® Zo if p is odd and ¢ is even
H\(Wrs; Zy) = . .

Zio ® 7o if p is even and ¢ is odd

Zo if p and ¢ are both odd
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with generators a when p even and 3, v when ¢ even, with v = 8 when ¢ odd and
a = 0 when p odd. By symmetry, we only need to compute the transfer and collapse
map for I = {s,t,u} in the 4 cases that either p and ¢ are both odd, both even, p is
odd and g is even, or p is even and ¢ is odd.
— p and g are both odd: by similar reasoning to Proposition it follows
generator  maps as the identity to the generator of Hy(Wr;Zr).
— p and ¢ are both even: all generators are mapped to zero.
— pis odd and ¢ is even: both generators 8 and v are mapped to zero.
— pis even and ¢ is odd: both generators « and 8 = « are mapped as the identity
to the two generators of Hi(Wrp;Zr).
o For W =W (A3) x W(Ay): Hi(Wr;Zr) = Za generated by .

— I ={s,t,u}
Y= (1®Fs)_(1®rv)
d! _ —_
S (D187 AT = (Y 187w pTy)
Bewr Bewr
1
Lo
— I = {s,t,v} Similarly, v — 0.
— I ={s,u,v}
v = (1oly)-Q1al)
d _ _
S (Y 187, — () 187 @ ATy)
BeWF BeWfF
1
L 19,4190, —2(1®T,)

The generators for Hy(Wy;Zr) when I = {t,u,v} are (1® I+ —1®I,) and
(1o —1®T,) and they both generate a Zy summand. Therefore the generator
for Hy(Wp;Zr) gets mapped to the generator 1 @ I'y — 1 ® I, of Hy(Wrp;Zy)
when I = {s,u,v}.
— I ={t,u,v} a—0
o For Wr = W(B3)x W (A1): Hi(Wr;Zr) = Zs®Zs generated by o = 8 and ~y. Using
the Python script in Appendix [A] we compute that transfer maps to all 3 generator
subgroups are 0.
o For Wy = W(H3) x W(A1): Hi(Wr;Zr) = Zs generated by ~. Using the Python
script in Appendix [A] we compute that transfer maps to all 3 generator subgroups
are 0.

g



B. CALCULATIONS FOR SECTION 175

Proor oF LEMMA 2.5.50. The E* page for the Coxeter group V- = W (I2(2p)) x W (A1),
for p > 1 is given by

3 0

2| 0 ZyoZye7Zs ?

1 0 0 Zo®Lo®Lop 7

o z ? ? Zy 7
0 1 2 3 4

We have the following diagrams for V' = W (I2(2p)) x W (A1), when p > 1:

Dy : o—2ao ° Dodi: @ o @
s t u s t u
Deo: {s,ule oft,u} Do = Des

ooy 9
{s,t,u}

where Dy, and Dy, are the empty diagram. Below we compute the terms in the spectral
sequence given at the start of this section:

Ho(Doaq; L) = Lo © Ly ® Zo

Ho(Das; Z2) ® Ho(Dayi Z3) & (& Liysp)
m(s,t)>3,7#00

= Zo®Zo®0D Zyy
= Zo® Ly ® ZLay

H(D5;Z2) ® Ho(D ey, 322) & Ho(Dag; Zo) & (& 7o)
* o—o W(HB)QW
W (B3)CW

= 0PpZd0p0
= Zs.
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The third integral homology of V' = W (I3(2p)) x W (A1) can be computed via the Kiinneth
formula for groups, as follows:

Hy(W(Ix(2p)) x W(A1);Z) = @D HGW(12(2p)); Z) @ Hy(W(A1); Z))
i+j=3
@ Tor(H;(W(I2(2p)); Z), H;(W (A1); Z))
i+j=2
= Zo®ZLy® LoD ZLy® Loy ® Ly ® Zo

where we compute this using the following

Ho(W (I5(2p)); Z) @ H3(W(A1);Z) = Z®Zy=17Zs
Hy(W(I2(2p)); Z) © Hy(W (A1); Z) (Zo®Zy) ®0=0
Hy(W(12(2p)); 2) @ Hi(W(A1);Z) = Zo®Zy =1
H3(W(12(2p)); Z) @ Ho(W(A1);Z) = (Lo @ Lo ® ZLop) @ L = Ly @ Lo ® Loy
Tor(Ho(W (I2(2p)); Z), Hy(A1;Z)) Tor(Z,0) =0
Tor(Hy(W(I2(2)); Z), Hy (W (A1); Z)) = Tor((Zo @ Za), Zo) = Lo ® Zs
Tor(Hy(W (I(2p)); Z), Ho(W(A1);Z) = Tor(Zs,Z) =0

For the case p =1, 1.e. V.= W (l2(p)) x W(A1) = W(A1) x W(A1) x W(A1), we have the
following E°° page:

3 0

2 0 Zo®ZoDZs ?

1 0 0 Lo ®ZLy®Zo 7

0 Z ? ? Lo ?
0 1 2 3 4

Computed via the following diagrams for V.= W (A;) x W (A1) x W(A1):
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Dodd : o °

[ J [ J [ J [ ]
st u s ¢t u
Dee: {s,tle o oft u} Dy = D
s,u}
cgvey to @

{s,t,u}
where Dy, and Dy, are the empty diagram. The terms in the spectral sequence as given at

the start of this section are therefore:

Ho(Dodd; Z2) = Lo & Loy & Lo

Ho(Dee; Z2) ® Ho(Dap; Z3) ® (& Lyp(oy)
m(s,t)>3,7#00

= Zo®ZyDZ0BO

= Zo®Zo®Zo
H1(Doy; Zo) ® Ho(D oy, 522) ® Ho(Day; Zo) & ( ® L)
o o—o W (H3)CW
W (B3)CW
= 0PZ®d0®O0

g

PRrROOF OF LEMMA 2551l The E* page for the Coxeter group V = W (A3) is given by

which is computed via the following diagrams for V- = W (As3):
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Dy: o—o—e Dodd : e—e—e
st u )
Dee: {s,u}e Day: o—e
{s,t]t,u}
DAS : L] DODQ = D“
{s,t,u}
and D _ ., is the empty diagram. Computing the terms in the spectral sequence therefore
gives:

Ho(Doda; Z2) = Zo

Ho(Dee; Z2) ® Ho(Dap; Z3) ® (& Lypgony)

m(s,t)>3,7#00
= Zo®Z3d0
= Zo®Zs
H1(Dey; Zo) ® Ho(D oy, 522) ® Ho(Day; Zo) ®( ®  Zo)
o o—o W (H3)CW
W (B3)CW
= 0086 Zy30
= Z

O

PROOF OF LEMMA 2555l We compare the spectral sequence for the groups W (Bs) and
W (Hs3) with their third integral homologies computed using the De Concini - Salvetti resolu-
tion.
e For V = W(Bj3) the Coxeter group of type Bs the diagrams are

Dy : oio—o Dodd : o ——o
S t U S t

u

Doo DAQ DoDo = D“

: ° : °
{s,u} {t,u}
and Dy, and D are the empty diagram. So the entries in the spectral sequence

become

even
*>—e

Ho(Doqa; Za) = Lo @ Lo
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Ho(Deo; Z2) ® Ho(Day; Z3) & ( ® L))
m(s,t)>3,7#00
= Zo®ZL3 DLy
= Zoo @ L3 D Ly

Hy(D5y;Z2) ® Ho(D ey, 322) & Ho(Dagi Zo) & (& L)
* o—o W(HB)QV
W(B3)CV

= 0000007,
= 7

The E*° page for the Coxeter group V = W (Bs) is therefore given by

3 0

2 0 Zo®Zs ?

1 0 0 Lo ®Z3 DLy 7

0 Z ? ? Zo ?
0 1 2 3 4

e For V = W(H3) the Coxeter group of type H3 the diagrams are
DV : .Lo_.s , . Dodd = DW

Doo DA2 D.D. - Doo

. ° : °
{s,u} {t,u}
and Dy, and D are the empty diagram. So the entries in the spectral sequence

become

Ho(Doda; Z2) = Zo

Ho(Das; Z3) ® Ho(Dayi Z3) & (@ Liysp)
m(s,t)>3,7#00

= Zo®Z3sDZLs
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Hl(D.D.;ZQ) D Ho(D. Zz) D H()(DAB; ZQ) D ( D Zg)

W(H3)CV
W (B3)CV

even
—s

= 00000dZe

The E* page for the Coxeter group V = W (H3) is therefore given by

2 0 Zs ?

1 0 0 Zo®Z3sDZs 7

To compute the third integral homology of W (Bs) and W (H3) we use the De Concini -
Salvetti resolution from [18], with integer coefficients and a trivial action of the group. We
expand on Example to compute the typical resolution of a three generator Coxeter group
before tensoring. We let x and y be such that x,y € {s,t,u} with x < y in the ordering.
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(53 52
03 02

Generators:

FxDxDx FJ?DCC
Lz yoe Lay

Fm,yjt
Fs,t,u

Differentials:

PachDac I (x - 1)Fz3x

(1 =p(y, z;m(z,y) = ))lane — (L + )Ty if m(z,y) even

r
=y Pona —p(@,y;m(z,y) = Dlyoy — (L+ )Ly if m(z,y) odd

(=1+p(z,y;m(z,y) —1))yoy — (1 +y)lay  if m(z,y) even

T — .
Yoy _PyDy +p(y7 x; m(a:, y) - 1)F$D$ - (1 + y)rmy lf m(x, y) Odd

| R see below
We recall the formula for d;(e(I")) from Equation (4)).

ok(e@) = Y D > (—1)* T8 ge (1)

i>1 Tel'; LiN{7}
D |>|Tis1] fEWFi
BT T 1BCT\{1}

Then 03(I's ¢,,,) is computed as follows:

03(Tstu) = Z Z Z (1) B Fulstubm) ge(T7)

i=1 7=s,t,u 6€Wl::\{‘r}

= Z (_1)£(B)+1/Brt,u+ Z (_1)£(B)+2/Brs,u

pewlinl Bew sy
? 3
+ ) (-1,
{s,t}
ﬁew{s,t,u}

1—1
a(Ts o 1,70(5,1:4)) = i-L(B)+ Y Tkl + p({s,t,u},7)
k=1

= UB) + 0+ pu({s,t,u}, 7)
= E(/B)_‘_N({s?tvu}ﬂ—)
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Tensoring with the integers over the trivial group action gives the following:

Z @w, Cs & Z @wy, Co &
Differentials:
1®T'oeoat 0
—2(1®7T4y) if m(z,y) even

1T

®Laoyoe " 1@ Te5e =105y —2(1®1Tgy)  if m(z,y) odd
—2(1 ®ny) if m(z,y) even
—1®Tyoy + 1@ 5, —2(1®@ 1)  if m(z,y) odd

We also must compute the differentials mapping in from Cjy. In the diagram below we let x

1® 'z yoy -

and y be such that x,y € {s,t,u} with x < y in the ordering. The differentials that we have

not already computed previously are computed below the diagram.

54 53

Cy Cs Co

Generators:
FacDxD;tDac
Fx7y3r,y
Fx,nyDx
Lz yoyoy
FS,t,uD:E
Differentials:

ooz = Tenzoz + Tl eneos
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The 04(I'y,y>z,y) computation is given by:

04(Taynay) = Y D, >, (9D er)

i=2 T=2,Y BGWIE‘Z'\{T}
i

- Z (_1)1/8F90’y3y+ Z (_1)26Fm,y3x

(v} (=}
PEW 2y PEW 2wy

- _( Z Brx,yDy)+ Z /Brx,yD:c

(v} (2}
BEW oy BEW 2y

i—1
a(rm,yDch,ya 277_>B) = 1 6(13) + Z |Fk‘ =+ M({xv y}aT)
k=1

= 20B) + 2+ p({z,y}, 1)
= 208) + 2+ pu({z,y},7)

The 04(T'z,y>2o2) computation is similar to that of 03(I'z yoz):

Fonane — 2y, ym(x,y) — D)l aneoe + Tayoe — 2lgyne m(z,y) even
53(Fs,t:)s)s) =
Iinene — p(a:, Y; m(a:, y) - 1)Ft3t3y + nyDa: - xrxij m(a:, y) odd

The 04(T'z,y-yoy) computation is similar to that of d3(I'y oy ):

(_1 + p(x, Y; m(x, 3/) - 1)>FyDyDy + (1 - y)rzyDy m(a;, y) even

03(Ls5s0s) =
e —Tysyoy + (s 23 m(x,y) — Danune + (1 — ) Taysy  m(z,y) odd

The differentials d4(I's ¢ yoz) With z € {s,t,u} will be computed on a case by case basis for
Coxeter groups W (B3) and W (Hjz). Tensoring with Z gives the following resolution, when
again = and y are such that z,y € {s,t,u} with z < y in the ordering.:
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6 1)
Z @w Cy - 7 @w C3 - 7 @w Co
Differentials:
1 0y F$D$D$Dx I 2(1 X Fz)x3$>

1@y ysey —— —m(z,y)(1® Fw,yDy) +m(z,y)(1® Fac,ny)

1 ® T yoama 0 if m(z,y) even
’ 1®T3520: — 1@ Tysyny  if m(z,y) odd
0 if m(x,y) even
—1®@Tyoyoy + 1 ®Tpneoe if m(z,y) odd
For W (Bs3) this gives the following resolution, where the computations for d3(I's¢,) and
04(Ts tuoz) with x € {s,t,u} are given afterwards:

1 ®Teyoyoy —

Z w, Cs & Z Sy Cy —
Differentials:

1®Tg5s0s 0

1® Lottt 0
1@ Lusuou ! 0

1® Ty ! —2(1®Ty,)

1® gt —2(1®7Ty)

1® g s ! —2(1®Tlsu)

1® Dy uou ! —2(1®Ts4)

10Tyt 10T =1 @ Tynu —2(1 @ Ty )
1 ® Ft,u)u — —1 ® 1_‘uDu + 1 & FtDt - 2(1 & Pt,u)

1 & Ps,t,u f 0
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s 5
Z @w Cy = Z @w Cs - Z @w Co

Differentials:

1 ® Tyn5050s = 2(1 ® T's5454)

1@ Tynpoint = 2(1 @ Tyor)

1 ® Lususunu ———— 2(1 ® T'ysuow)
1®@Dgnst ——> —4(1 @ Dsyot) + 4(1 @ T 4s)
1®Tsuosu — —2(1® Ts you) + 2(1 @ Ts uos)

1® Ft,u:)t,u = _3(1 ® Ft,u:)u) + 3(1 & Ft,u:)t)

1@ 5608t 0
1®@ st b 0
1® s uo5s0s 0
1® s uouou 't 0

1@l st ——> 1@ I'i5ior — 1 @ Dysuou

1T uouou —— =1 @ Lynunu + 1 @ Tyt

1 X Fs,t,u)s ' 2(1 & Fs,t,u)
1 & Fsﬂf,u)t I 2(1 X Fs,t,u)
1 & Fs,t,u)u I 2(1 ® Fs,t,u)

The 63(I's ) computation is given by:

G3(Tsra) = Y (=D)L, + Y (=1)"D*2gr,,
sew (il pew (sl
+ Z (_1)5(5)+3/5T8¢
Bew{s,t}

{s:t,u}

185
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We note here that after tensoring with Z each summand will become a sum of identical
generators, with sign depending on the length of the minimal coset representatives. We write
a short Python program, attached in Appendix [A] which returns the number of even and odd
length minimal coset representatives, and we note that in this case for every summand the
signs will cancel out.

The 04(T's+u5s) computation is given by:

64(F5,t,u38) = Z Z Z (_1)a(r’i77’ﬁ)ﬁe(rl)

i=1,2 7€l Bewlfii\{f}
BT 1 BCT\{}

Here we compute by Python in Appendix [A] the coset representatives of a two generator
subgroup of {s,t,u} and the conjugates of an element of {s,¢,u} by these representatives.
Whenever this conjugate is a generator of the two element subgroup, it follows that there is
another coset representative which conjugates to the same generator, and these differ in length
modulo 2. This means that the corresponding signs for the entries will be the opposite in the
above sum and they will therefore cancel upon tensoring with Z. A sample of this calculation
is shown in Example We therefore only need to consider the case where i = 2.

54(Fs,t,u33) = Z Z Z (_1)a(1“,1:,7-,,8)5118’t7u
1=2 7=5 BeWs
= 1—‘s,t,u + Srs,t,u

i—1
a(Tsruns, 7, B) = i-4(B)+ Y Tkl + p(T7)
k=1
a(lstuos:2,s,0) = 24(8)+3+1
We therefore have as generators for Hs(W (Bs); Z):
a = 1®Lssos
g 1 @ it
¥ = 1®Tusuou
0 = 1®Ts15s =1

M

Psuns =101 uou
N = Dyt —1@Tuon
t = 1®Ts4t
and the relations are given by the image of d4 as follows:
20=20=2y=40=2e=3n=21=0
=~
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So the third integral homology of W (Bj3) is therefore given by:

H3(W(B3);Z) = 7o ® Lo ® Ly ® Lo ® Ly ® L3

and thus we see there are no non trivial extensions for the B3 component.
For W(Hj3) this gives the following resolution, where we again compute d3(I's¢,) and

04(Ts tunz) with x € {s,t,u} using Python (see Appendix :

Z @w; Cs & Z @w, Cy —
Differentials:

1® 555 0

1® Ty ! 0

1®Tysuou ! 0

1 X Fs,t:)s —1 X Fs:)s -1 ® Ft:)t - 2(1 & Fs,t)

1@ o= 1@ + 1@ Fyns —2(1 @ Ly y)

1 X Fs,u:)s f _2(1 & Fs,u)

1@yt —2(1®Tly)
10Tyt 10T 5 =1 @ Tynu —2(1 @ Ty )

1 & Pt,uDu — —1 ® FuDu + 1 X FtDt - 2(1 & Pt,u)

1 & Fs,t,u f 0



B. CALCULATIONS FOR SECTION 188

5 5
Z Qw Cy . 7 @w C3 : Z @w Co

Differentials:

1 ® Tyn5050s = 2(1 ® T's5454)
1@ Tynpoint = 2(1 @ Tyor)

1 ® Lususunu ———— 2(1 ® T'ysuow)
1®@Dsnst ——> —5(1 @ Dsyot) + 4(1 @ T 4s)
1®Tsuosu — —2(1® Ts you) + 2(1 @ Ts uos)
1@yt — —3(1 @ Ty uou) + 3(1 @ Ty yst)
1@ 4555s > 1 Q@ Tsos55s — 1 @ Tinyoe

1@ oot > =1 Q@ 'i5i5t + 1 @ Dy

1 X Fs,uDst i 0

1® s uouou 't 0
1@l st ——> 1@ I'i5ior — 1 @ Dysuou
1T uouou —— =1 @ Lynunu + 1 @ Tyt

1 ® Fs,t,ujs f 2(1 ® Fs,t,u)

1 & Fsﬂf,ujt I 2(1 X Fs,t,u)

1 & Fs,t,u)u I 2(1 ® Fs,t,u)
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We therefore have as generators for Hs(W (H3);Z):

a = 1855

B 1 ® Liseot

0l 1 ® Lusuou

0 = 1015 =101
€ = Dsuns — 105400

N = Tiuot =13 Ttuou

t = 1®T.

and the relations are given by the image of 4 as follows:
20 =2 =2y=5=2e=3n=21=0
a=p
B=~
So the third integral homology of W (H3) is therefore given by:
H3(W(Hs3);Z) = Lo ® Lo ® Ly B L3 & Zs

and thus we see there are no extension problems for the Hs component.
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