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Abstract

We calculate the second and third integral homology of arbitrary

finite rank Coxeter groups. The first of these calculations refines a

theorem of Howlett, the second is entirely new. We then prove that

families of Artin monoids, which have the braid monoid as a sub-

monoid, satisfy homological stability. When the K(π, 1) conjecture

holds this gives a homological stability result for the associated fam-

ilies of Artin groups. In particular, we recover a classic result of

Arnol’d.
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Introduction

This thesis is concerned with the homology of Coxeter and Artin groups. Broadly, the

thesis can be separated into two parts: the first two chapters cover results that give formulas

for the second and third integral homology of a finite rank Coxeter group, and the remaining

chapters focus on a homological stability results for families of Artin monoids.

Introduction to Coxeter and Artin groups

Harold Scott MacDonald Coxeter (known as Donald) was one of the greatest geometers

of the twentieth century. Born in 1907, son to a sculptor and a painter, he was drawn to

geometric shapes as a child, and later to a chapter on ‘platonic solids’ in his school textbook.

Pursuing this interest, he won a prize for an essay on “Dimensional Analogy”, and Bertrand

Russell, who was friends with his father, read the essay and persuaded Coxeter to pursue

mathematics, despite being at the bottom of his class. His continuing fascination with poly-

topes and geometry led him to rigorously define regular polytopes, extending the notion of

regular polygons and polyhedra to tessellations, such as honeycombs, and higher dimensional

polytopes. The renewed interest in polytope reflection groups in the twentieth century was

partially due to the discovery that many polyhedra occur naturally, inherent in crystalline

structures. Due to the symmetrical laws of nature, it is the regular polyhedra which occur.

However as Coxeter writes:

“Thus the chief reason for studying regular polyhedra is still the same as in

the time of the Pythagoreans, namely, that their symmetrical shapes appeal

to one’s artistic sense.”

H.S.M. Coxeter Regular Polytopes [16, p.vi]

and so it is possible that he required no application, only inherent beauty, to study these

objects. Coxeter introduced the symmetry groups of regular polytopes, Kaleidoscopic groups,

in his 1947 book Regular Polytopes [16], reviewed in the 1949 Bulletin of the American

Mathematical Society:

“The serious mathematics begins with the third chapter in which Coxeter in-

troduces the symmetry groups of the Platonic solids. After a full discussion

of this important topic, he turns to degenerate polyhedra such as tessellations

and honeycombs and their groups. These lead to results of crystallographic
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INTRODUCTION TO COXETER AND ARTIN GROUPS 2

importance. Under the heading “The Kaleidoscope” he then describes the dis-

crete groups generated by reflections. The exposition is greatly illuminated by

his own “graphical notation” which makes complicated relations self-evident.”

C. B. Allendoerfer Bulletin of the AMS 1949 [3]

In 1961 Tits introduced the abstract definition of Coxeter groups in his preprint Groupes

et geometries de Coxeter : a Coxeter group is generated by a set of involutions, which satisfy

generalised braiding relations [44]. One of the most primitive examples of a Coxeter group

is the symmetric group on n letters, Sn. The groups of “The Kaleidoscope” were exactly the

finite examples of Coxeter groups and the “graphical notation” of Coxeter became known as

Coxeter-Dynkin diagrams. Coxeter groups play a significant role in many areas of mathematics

and they often arise as the foundations of various structures. For example they arise as root

systems and indexing sets for Iwahori-Hecke algebras in the representation theory of groups

of Lie type, they arise as Weyl groups of Lie algebras and algebraic groups [27]. In both

geometric and combinatorial group theory, Coxeter groups arise as a rich source of examples,

and Tits originally defined Coxeter groups as a stepping stone to developing the theory of

buildings [17]. Key texts in the study of Coxeter groups, and of particular relevance to this

thesis are The Geometry and Topology of Coxeter Groups by Davis [17], Reflection Groups and

Coxeter Groups by Humphreys [33] and Characters of Finite Coxeter Groups and Iwahori-

Hecke Algebras by Geck and Pfeiffer [27].

For every Coxeter group there is a related Artin group, where the condition that the

generators are involutions is discarded. The Artin group related to the Coxeter group Sn is

the braid ground on n-strands, Bn. Braids were initially studied in the context of being non-

intersecting closed curves in 3-space (for example, see [2]), but in 1925 Artin introduced many

results on Bn, including the standard presentation. His motivation was to better understand

the theory of knots and links. As Joan Birman writes :

“It is a tribute to Artin’s extraordinary insight as a mathematician that the

definition he proposed in 1925 for equivalence of geometric braids could ul-

timately be broadened and generalised in many different directions without

destroying the essential features of the theory.”

Joan Birman Braids, links and mapping class groups [7, p.3]

and indeed this theory was generalized in many ways i.e. to theory of algebraic functions

and algebraic equations [29], to theory of knots and links [28] and to monodromy theory in

various forms (for example symplectic monodromy [5]). In 1962 Fox and Neuwirth showed

that the braid group arose as the fundamental group of configurations of n-points on the

plane [24]. This can be rephrased as the fundamental group of a quotient of a hyperplane

complement by the symmetric group Sn, and in 1971 Artin groups were first introduced by

Brieskorn [9] as the fundamental groups of the quotient of certain hyperplane complements by

corresponding Coxeter groups. Brieskorn was motivated by the result of Fox and Neuwirth,
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alongside conjectures of Tits which speculated that a generalisation of Braid groups in the

sense of hyperplane complements should correspond to the Coxeter groups. His main interest

was the geometric meaning that these groups had, in terms of singularity theory.

Alongside Bn, the free group and the free Abelian group are also examples of Artin

groups. Artin groups can be split into two families: the finite type Artin groups are Artin

groups associated to finite Coxeter groups, and the infinite type Artin groups are Artin groups

associated to infinite Coxeter groups. While many results are known in general for finite type

Artin groups, much is yet to be determined for infinite type Artin groups. There are many

conjectures concerning infinite type Artin groups and one key conjecture in this area is the

K(π, 1) conjecture. This conjecture states that the defining hyperplane complements are in

fact classifying spaces for the related Artin groups. A discussion of Artin groups and in

particular the K(π, 1) conjecture is recorded in Paris’s notes on the K(π, 1) conjecture for

Artin groups [40].

Results: Low dimensional homology of Coxeter groups

Define π(a, b; k) to be a word of length k, given by the alternating product of a and b, i.e.

π(a, b; k) =

length k︷ ︸︸ ︷
abab . . . .

Given a finite generating set S, a Coxeter group W has the following presentation

W =
〈
S
∣∣∣ s2 = e ∀s ∈ S
π(s, t;m(s, t)) = π(t, s;m(s, t)) ∀s, t ∈ S

〉
where m(s, t) = m(t, s) and m(s, t) is either an integer greater than or equal to 2, or ∞. We

call |S| the rank of W .

One can package the information given in the presentation of a Coxeter group W into a

diagram called a Coxeter diagram, denoted DW . It is the graph with vertices indexed by the

elements of the generating set S. Edges are drawn between the vertices corresponding to s

and t in S when m(s, t) ≥ 3 and labelled with m(s, t) when m(s, t) ≥ 4, as shown below:

s t s t s

m(s, t)

t

m(s, t) = 2 m(s, t) = 3 m(s, t) ≥ 4

In this thesis, variations on this diagram are defined, and Theorems A and B calculate the

second and third integral homology for any finitely generated Coxeter group W , in terms of

simplicial homologies of these new diagrams. The first theorem is a refinement of a theorem

of Howlett [32], who computed the rank of the Schur multiplier of a finite rank Coxeter group

in 1988. To state this theorem we introduce three new diagrams Dodd, Deven and D••.
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• Dodd is the diagram with vertex set S and an edge between s and t in S if m(s, t) is

odd. For example when W is the Coxeter group with DW the following diagram

s
4

t u

then Dodd is given by

s t u

• Deven is the diagram with vertex set S and an edge between s and t in S if m(s, t)

is even and not equal to 2. For example when W is the Coxeter group with DW the

following diagram

s
4

t u

then Deven is given by

s
4

t u

• D•• is the diagram with vertex set {{s, t} | s, t ∈ S, m(s, t) = 2}. There is an edge

between {s1, t1} and {s2, t2} in D•• if s1 = s2 and m(t1, t2) is odd. For example

when W is the Coxeter group with DW the following diagram

s
5

t u v

then D•• is given by

{s, u}{s, v} {v, t}

Theorem A. Given a finite rank Coxeter group W , there is a natural isomorphism

H2(W ;Z) ∼= H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where in the first and final term of the right-hand-side the diagrams are considered as simplicial

complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the

diagram).

Computing the rank of the right hand side recovers Howlett’s theorem [32].

Example. Let W be the Coxeter group defined via the following diagram

st

4

5

y

v w∞

x
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where we choose this example as it relates to an infinite Coxeter group which is not one

of the classically studied Coxeter groups. Then the subdiagrams and consequent simplicial

homologies representing the second integral homology of W are:

Dodd :

st

y

v w

x H1(Dodd;Z2) = 0

Deven :

st

4

y

v w

x Z2[E(Deven)] = Z2

D•• :
{x, t} {t, w} {s, w} {s, y} {x, y}

{v, t} {s, v} {x, v}

H0(D••;Z2) = Z2

and, hence, Theorem A yields

H2(W ;Z) = Z2 ⊕ Z2.

Our second theorem computes the third integral homology of a finitely generated Coxeter

group. To state this theorem we introduce four new diagrams, DA2 , D even , DA3 and D�
••.

• DA2 is the diagram with vertex set {{s, t} | s, t ∈ S, m(s, t) = 3}. There is an edge

between {s1, t1} and {s2, t2} in DA2 if s1 = s2 and m(t1, t2) = 2. For example when

W is the Coxeter group with DW the following diagram

s

t

u v

then DA2 is given by
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{s, u} {u, v}

{t, u}

• D even is the diagram with vertex set {{s, t, u} | s, t, u ∈ S, m(s, t) = m(s, u) =

2 and m(t, u) is even}. There is an edge between {s1, t1, u1} and {s2, t2, u2} in DA2

if t1 = t2, u1 = u2 and m(s1, s2) is odd. For example when W is the Coxeter group

with DW the following diagram

s
4

t u v w

then D even is given by

{s, t, v} {s, t, w} {s, u, w}

• DA3 is the diagram with vertex set {{s, t, u} | s, t, u ∈ S, m(s, t) = m(t, u) =

3 and m(s, u) = 2}. There is an edge between {s1, t1, u1} and {s2, t2, u2} in DA3

if t1 = t2, u1 = u2 and m(s1, s2) = 2. For example when W is the Coxeter group

with DW the following diagram

s t u v w

then DA3 is given by

{s, t, u}
{t, u, v}

{u, v, w}

• D�
•• is the CW complex formed from the diagram D•• by attaching a 2-cell to every

square. Squares in D•• have the form

(s, t) (u, t)

(s, v) (u, v)

For example when W is the Coxeter group with DW the following diagram

s t u

v

w x

then D�
•• is given by
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{s, w} {t, x}

{t, w}

{s, x}

{s, u}{s, v}{t, v} {u, x} {x, v} {v, w}

Theorem B. Given a finite rank Coxeter group W such that DW does not have a sub-

diagram of the form Y t A1, where Y is a loop in the Coxeter diagram Dodd, there is an

isomorphism

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2)),

where each diagram is as described above, and viewed as a simplicial complex. In this equation,

© denotes a known non-trivial extension of H0(DA3 ;Z2) by H0(D••;Z2) fully described via

an extension matrix XW .

If W is such that DW has a subdiagram of the form Y t A1 where Y is a 1-cycle in the

Coxeter diagram Dodd, then there is an isomorphism modulo extensions

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

⊕H1(D�
••;Z2),

where the unknown extensions involve the H1(D�
••;Z2) summand.

The diagrams appearing on the right hand side of the isomorphism are relatively simple

to compute, as shown in the below example.

Example. Let W be, again, the Coxeter group defined via the following diagram

st

4

5

y

v w∞

x

Then the subdiagrams and consequent simplicial homologies representing the third integral

homology of W are:
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Dodd :

st

y

v w

x H0(Dodd;Z2) = Z2

DA2 : {t, s}
{s, x} {x,w}

{w, y} H0(DA2 ;Z3) = Z3

D even {x, t, y}
{v, t, x}

{v, t, y} H0(D even ;Z2) = Z2 ⊕ Z2 ⊕ Z2

DA3 : {t, s, x}
{s, x, w}

{x,w, y} H0(DA3 ;Z2) = Z2

D•• :
{x, t} {t, w} {s, w} {s, y} {x, y}

{v, t} {s, v} {x, v}

H0(D••;Z2) = Z2

and Theorem B also requires us to count edges with label bigger than 3 but not infinity:

y t y v
4 5

and subdiagrams of particular shapes, of which we have three:

y t s
4

t y w
4

v y w
5

We note that Dodd has no loop in it. Putting this all together, for the Coxeter group W

related to DW we have from Theorem B that the third integral homology is the sum of the

right hand column, with a known non-trivial extension, plus a summand for each of the edges

and the subdiagrams highlighted above

H3(W ;Z) = Z2 ⊕ Z3 ⊕ (Z2 ⊕ Z2 ⊕ Z2)⊕ Z4 ⊕ (Z4 ⊕ Z5)⊕ (Z2 ⊕ Z2 ⊕ Z2).
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These results arise from the computation of the isotropy spectral sequence, for a con-

tractible CW -complex upon which the Coxeter group acts, called the Davis complex. The

spectral sequence computations rely heavily on a free resolution for Coxeter groups, described

by De Concini and Salvetti in Cohomology of Coxeter groups and Artin groups [18]. The com-

puter algebra package PyCox is used to complete some of the longer calculations required, and

an overview of this Python package can be found in PyCox: Computing with (finite) Coxeter

groups and Iwahori-Hecke algebras by Geck [26].

We note here that in an unpublished paper Cohomology of some Artin groups and monoids

by Ellis and Sköldberg [23], they remark on page 20 that the PhD thesis Homology of Coxeter

groups and related calculations by J. Harris at NUI Galway contains a calculation of the third

integral homology of a Coxeter group. This remark is also mirrored in Example 3 of Polytopal

resolutions for finite groups by by Ellis, Harris and Sköldberg [22].

Results: Homological stability for Artin Monoids

The main influencing factor for selecting this topic of study, as well as the inspiration for

much of the set up for the proof, was Hepworth’s Homological Stability for Families of Coxeter

Groups [31].

For every Coxeter group W there is a corresponding Artin group AW with presentation

AW = 〈σs for s ∈ S |π(σs, σt;m(s, t)) = π(σt, σs;m(s, t)), ∀s, t ∈ S〉.

Here we note that the Coxeter diagram DW also contains all the information on the Artin

group presentation. The Artin monoid A+
W of an Artin group AW associated to a Coxeter

group W is defined to be the monoid with the same presentation as A:

A+
W = 〈σs for s ∈ S |π(σs, σt;m(s, t)) = π(σt, σs;m(s, t)), ∀s, t ∈ S〉+.

A family of groups or monoids

G1 → G2 → · · · → Gn → · · ·

is said to satisfy homological stability if the induced maps on homology

Hi(BGn)→ Hi(BGn+1)

are isomorphisms for n sufficiently large compared to i.

The topic of homological stability has been widely studied since the latter half of the

twentieth century, with classical examples being homological stability for the sequence of:

symmetric groups Sn by Nakaoka [39]; general linear groups GLn by Maazen [35] and Van

der Kallen [45]; and braid groups Bn by Arnol’d [4]. These classical examples are all proofs of

homological stability for sequences of discrete groups, but the scope of homological stability

results is much broader than this, and there are numerous examples of groups and spaces

which satisfy homological stability and closely related phenomena. Recently, work of Basterra,

Bobkova, Ponto, Tillmann and Yeakel, defines and studies homological stability for operads
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[6], and work of Galatius and Randal-Williams [25] has focused on homological stability

results for moduli spaces of manifolds.

In many cases where homological stability is known it is difficult to compute the homology

of a group in the sequence in general. However there are techniques to compute the stable

homology of the sequence and due to the homological stability result this gives us infinitely

many new computations of the group homology. The question of the stable homology is not

addressed in this thesis.

The theory of homological stability has been enclosed in a generalised framework during

the past few years. Recent work by Randal-Williams and Wahl [42] presents a categorical

framework for homological stability results for discrete groups, and work of Krannich [34]

generalises this to a framework in the context of E2-algebras. However both of these frame-

works still require a proof of high connectivity, arguably the most difficult and non-standard

part of a homological stability proof, to be inserted in order to yield results.

Our result concerns a sequence of Artin monoids with the braid monoid as a sub-monoid.

The maps are given by inclusions corresponding to increasing the number of generators of the

braid sub-monoid. In this case the sequence of Coxeter diagrams relating to the corresponding

Artin groups is as follows

A1

σ1

� � //

A2

σ1 σ2

� � // · · · �
� //

σ1 σ2 σn−1 σn

An

� � // · · ·

Theorem C. The sequence of Artin monoids

A+
1 ↪→ A+

2 ↪→ · · · ↪→ A+
n ↪→ · · ·

satisfies homological stability. That is, the induced map on homology

H∗(BA
+
n−1)

s∗−→ H∗(BA
+
n )

is an isomorphism when ∗ < n
2 and a surjection when ∗ = n

2 . Here homology is taken with

arbitrary constant coefficients.

As far as we are aware, this is the only homological stability proof for a sequence of

monoids that are not groups, though often homological stability results for groups will imply

results on the homology of associated monoids. In particular when the Ore condition holds

there is a homotopy equivalence between the classifying spaces of the group and the monoid.

In our case, this equivalence is true if and only if the K(π, 1) conjecture holds and therefore we

deduce a homological stability result in an unconventional direction: from monoids to groups.

Corollary D. Suppose the K(π, 1) conjecture holds for the sequence of Artin groups

A1 ↪→ A2 ↪→ · · · ↪→ An ↪→ · · ·
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then the sequence satisfies homological stability, with the same range as in Theorem C.

Homological stability was demonstrated for the finite type families of Artin groups of the

form we study, via a computation of their full cohomology by Arnol’d, written in the Bourbaki

paper Sur les groupes des tresses by Brieskorn [10].

The key step in the proof of the theorem is to show that a certain family of semi-simplicial

spaces on which the monoids A+
n act is highly connected. To define this family of spaces and

prove the related connectivity requires simplicial set theory, following the recent and very

useful text Semi-simplicial spaces by Ebert and Randal-Williams [21]. The proof of high

connectivity follows a union of chambers argument, as in many proofs of homological stability.

This argument was particularly influenced by a high connectivity argument in Paris’s notes

on the K(π, 1) conjecture for Artin groups [40]. This argument comprises the most technical

part of the proof and utilises monoid theory, in particular following theory for Artin monoids

from Brieskorn and Saito’s Artin Gruppen und Coxeter Gruppen [11].
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CHAPTER 1

Background: Coxeter groups

This chapter follows The Geometry and Topology of Coxeter Groups by Davis [17].

1.1. Definition and examples

Definition 1.1.1. A Coxeter matrix on a finite set of generators S, is a symmetric matrix

M indexed by elements of S, i.e. with integer entries m(s, t) for {s, t} in S × S. This matrix

must satisfy

• m(s, s) = 1 for all s in S

• m(s, t) = m(t, s)

• m(s, t) must be either greater than 1, or ∞, when s 6= t.

Definition 1.1.2. A Coxeter matrix M has an associated Coxeter group, W , with pre-

sentation

W = 〈S | ∀s, t ∈ S, (st)m(s,t) = e〉.

We call (W,S) a Coxeter system, and we call |S| the rank of W . We adopt the convention

that (W, ∅) is the trivial group.

Remark 1.1.3. Note that the condition m(s, s) = 1 on the Coxeter matrix implies that

the generators of the group are involutions i.e., s2 = e for all s in S.

Definition 1.1.4. Define the length function on a Coxeter system (W,S)

` : W → N

to be the function which maps w in W to the minimum word length required to express w in

terms of the generators. That is, we set `(e) = 0, and if w 6= e is in W then there exists a

k ≥ 1 such that w = s1 . . . sk for si in S. We choose minimal k satisfying this property and

set `(w) = k.

Example 1.1.5. If m(s, t) ≥ 3 then `(sts) = 3 whereas if m(s, t) = 2 then

sts = s(ts) = s(st) = (s2)t = t

and so `(sts) = `(t) = 1.

14
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Definition 1.1.6. Define π(a, b; k) to be a word of length k, given by the alternating

product of a and b i.e.

π(a, b; k) =

length k︷ ︸︸ ︷
abab . . .

Remark 1.1.7. The relations (st)m(s,t) = e can be rewritten by left multiplying by s and

t in turn and using the fact that the generators are involutions to get

π(s, t;m(s, t)) = π(t, s;m(s, t))

when m(s, t) 6=∞. For example when m(s, t) = 3, the relation (st)3 = e can be rewritten as

sts = tst. Therefore the presentation of a Coxeter group W can also be given as

W =
〈
S
∣∣∣ (s)2 = e ∀s ∈ S
π(s, t;m(s, t)) = π(t, s;m(s, t)) ∀s, t ∈ S

〉
.

Definition 1.1.8. Given a Coxeter matrix corresponding to a Coxeter system (W,S),

there is an associated graph called the Coxeter diagram, denoted DW . It is the graph with

vertices indexed by the elements of the generating set S. Edges are drawn between the vertices

corresponding to s and t in S when m(s, t) ≥ 3 and labelled with m(s, t) when m(s, t) ≥ 4,

as shown below:

s t s t s

m(s, t)

t

m(s, t) = 2 m(s, t) = 3 m(s, t) ≥ 4

When the diagram DW is connected, W is called an irreducible Coxeter group.

Example 1.1.9. The Coxeter group with one generator W = 〈s|s2 = e〉 is the cyclic group

of order 2. We call this the Coxeter group of type A1. Its diagram DW is given by

s

Example 1.1.10. The symmetric group Sn is an example of a Coxeter group: it is iso-

morphic to the Coxeter group of type An−1, which has the following diagram

s1 s2 s3
. . .

sn−2 sn−1

We consider the isomorphism which sends a generator si to the transposition (i, i + 1). If

two transpositions are disjoint they commute, whereas transpositions

sisi+1 = (i, i+ 1)(i+ 1, i+ 2) = (i, i+ 1, i+ 2)

form a 3-cycle and therefore sisi+1 has order 3 for all 1 ≤ i ≤ n− 2. This corresponds to the

relations given by the Coxeter diagram of type An−1, for the symmetric group presentation:

Sn = 〈{s1, . . . sn−1} | s2
i = e ∀i, (sisj)2 = e ∀|i− j| ≥ 2, (sisi+1)3 = e ∀1 ≤ i ≤ (n− 2)〉.
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Example 1.1.11. The dihedral group D2p, of order 2p, is an example of a Coxeter group:

it is isomorphic to the Coxeter group of type I2(p), which has the following diagram:

s

p

t

and here we note that if p is 2 then the edge is not included in the diagram. The group D2p

can be viewed as the group of symmetries of a 2p-gon, and to present it as a Coxeter group

we exhibit a set of generating reflections. For instance the Coxeter group of type I2(3) has

the following diagram

s t

and correspondingly the dihedral group D6 can be generated by reflections on the hexagon as

depicted in the diagram below:

s

t

where we note that the reflections s and t both have order 2, and composing the reflections

corresponds to rotation by 2π/3, so (st)3 is the identity. This agrees with the labels (or lack

thereof) in the Coxeter diagram, and corresponds to the following presentation of D6:

D6 = 〈{s, t} | s2 = t2 = e, (st)3 = e〉.

The examples we have considered have been those of finite Coxeter groups though of

course, Coxeter groups are usually infinite (for instance any Coxeter group with an ∞ in the

corresponding Coxeter matrix is infinite). There is also a notion of Coxeter groups with an

infinite number of generators, but we do not approach this in this thesis. Coxeter completely

classified the irreducible finite Coxeter groups in 1935 [15]. There are four infinite families of

finite Coxeter groups, and six exceptional finite Coxeter groups.

Theorem 1.1.12 (Classification of finite Coxeter groups, Coxeter [15]).

A Coxeter group is finite ⇐⇒ it is the (direct) product of finitely many finite irreducible Coxeter groups.
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The following is a complete list of the diagrams corresponding to finite irreducible Coxeter

groups, and therefore completely classifies finite Coxeter groups.

Infinite families Exceptional groups

An . . . F4
4

Bn . . .
4

H3
5

Dn . . . H4
5

I2(p)
p

E6

E7

E8

Definition 1.1.13. We say that a finite irreducible Coxeter group W is of type D if its

corresponding diagram is given by D, and we denote this Coxeter group W (D).

As we have seen in Examples 1.1.10 and 1.1.11, the Coxeter group of type An, or W (An),

corresponds to the symmetric group Sn+1 and the Coxeter group of type I2(p), or W (I2(p)),

corresponds to the dihedral group D2p. Similarly, the Coxeter group of type Bn, or W (Bn),

corresponds to the signed permutation group Z2 o Sn (the An−1 subdiagram present inside

the diagram for Bn corresponds to the Sn subgroup of Z2 o Sn). The Coxeter group of type

Dn, or W (Dn), corresponds to an index two subgroup of type Bn, such that the signs in each

permutation multiply to +1 (sign changes are even).

1.2. Products and subgroups

Consider two Coxeter systems (U, SU ) and (V, SV ). We will denote DU t DV by the

diagram created by placing the two corresponding diagrams DU and DV beside each other,

disjointly.
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Lemma 1.2.1. With notation as above, the diagram DU t DV corresponds to taking a

product of Coxeter groups U × V , and defines another Coxeter group W ∼= U × V , which has

diagram DW = DU tDV and generating set SW := SU ∪SV . The Coxeter relations are given

by those for (U, SU ) and (V, SV ), and letting m(su, sv) = 2 for all su in SU and sv in SV .

Proof. The generating set and relations for (W,SW ) can be read off the Coxeter diagram

DW = DU tDV . In particular, since there are no edges between the subdiagram DU and the

subdiagram DV , m(su, sv) = 2 for all su in SU and sv in SV . Since the generators from SU
and SV commute pairwise, any word w in W can be written as w = uv for u in U and v in

V . Then the group W is isomorphic to the product group U × V via the map

W ∼= U × V
w = uv ←→ (u, v).

�

Example 1.2.2. The finite Coxeter group of type I2(2) is an example of a product of

Coxeter groups. Its diagram has the form

s t

and so it is in fact isomorphic to the product of the Coxeter group of type A1 with itself:

the group W (A1)×W (A1). The product group has two generators, both with order 2, that

commute, and is therefore isomorphic to the product of cyclic groups Z2 × Z2.

Definition 1.2.3. We say that an inclusion of Coxeter diagrams DU
ι
↪→ DW is full if for

every two vertices s and t in DU , m(s, t) is the same in DW as it is in DU . In other words, if

two generators are in SU then they are also in SW (via the inclusion map) and we insist that

the edge between them is the same in DU as it appears in DW . In this setting we call DU a

full subdiagram of DW .

Definition 1.2.4. Let (W,S) be a Coxeter system. For each T ⊆ S denote by WT the

subgroup of W generated by T . Denote the diagram corresponding to this subgroup by DWT
.

We call subgroups that arise in this way parabolic subgroups.

Proposition 1.2.5 (see Davis [17, 4.1.6.(i)]). For WT a parabolic subgroup, (WT , T ) is a

Coxeter system in its own right, and defines a full inclusion DWT
↪→ DW . Similarly, a full

inclusion corresponding to a parabolic subgroup.

Throughout this writing, many of the results and theory are inspired by or correspond to

the theory of cosets in Coxeter groups. The next result concerns cosets of parabolic subgroups.

Let (W,S) be a Coxeter system, and T, T ′ be subsets of S.
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Lemma 1.2.6 (see Davis [17, 4.3.1]). There is a unique element w of minimum length in

the double coset WTwWT ′. More precisely, any element in this double coset can be written as

awa′ where a is in WT , a′ is in WT ′ and `(awa′) = `(a) + `(w) + `(a′).

Definition 1.2.7 (see Davis [17, 4.3.2]). We say an element w in W is (T, T ′)-reduced if

w is the shortest element in WTwWT ′ .

Remark 1.2.8. Given the parabolic subgroup WT in W , w in W is (T, ∅)-reduced if

`(tw) = `(t) + `(w) = 1 + `(w) for all t in T . Note that this means that the word w

cannot be rearranged to start with the letter t. Likewise we say w in W is (∅, T )-reduced if

`(wt) = `(w) + 1 for all t in T . Similarly this means that the word w cannot be rearranged

to end with the letter t.

Definition 1.2.9. A finite parabolic subgroup is called a spherical subgroup.

Since the diagrams of parabolic subgroups appear as full subdiagrams of the Coxeter

diagram, for a Coxeter system (W,S) we can identify its spherical subgroups by identifying

occurrences of the irreducible diagrams from Theorem 1.1.12 in DW , and disjoint unions of

such diagrams.

Example 1.2.10. Consider the Coxeter group W corresponding to the following diagram

s

t

u

Then W is infinite: one way to view this is by considering W as the group of symmetries of

the Euclidean plane tiled by equilateral triangles, with generators s, t and u corresponding to

reflections in the three edges of a chosen ‘fundamental’ triangle. Then for any other triangle

in this tiling there is a word in W mapping the fundamental triangle to the chosen triangle,

and so one can observe that the group is infinite. The spherical subgroups of W are given by

the following subdiagrams (of type A1 and A2), as well as the trivial group W∅.

s t u

s

t

s

u t

u

Definition 1.2.11. We denote by S the set of all subsets of S which generate spherical

subgroups of W , i.e.

S = {T ⊂ S |WT is finite}.
We will sometimes refer to an element T of S as a spherical subset.

Remark 1.2.12. Let s, t in S. We note that every one-generator subgroup W{s} for s in

S satisfies that W{s} is of type A1, and so is finite. For the remainder of this thesis we write
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Ws for W{s}. Furthermore when m(s, t) 6= ∞, W{s,t} is of type I2(m(s, t)), which is a finite

subgroup, so every edge not labelled by ∞ in DW represents a finite group. Finally we note

that, since we adopted the convention that the group with no generators and no relations is

the (finite) trivial group, ∅ is always present in S.

Lemma 1.2.13 (see Davis [17, 4.6.1]). If W is a finite Coxeter group generated by S, there

is a unique element w0 of longest length in W , satisfying `(sw0) < `(w0) for all s in S.

It follows that every spherical subgroup WT of a Coxeter group W has a longest element.

1.3. The Davis complex

Recall that subsets of S generate subgroups of W and these are known as parabolic sub-

groups, denoted WT , for T a subset of S. If a parabolic subgroup is finite we call it a spherical

subgroup and we denote the set of all subsets of S which generate spherical subgroups of W

by S.

Definition 1.3.1. A coset of a spherical subgroup is called a spherical coset. For a Coxeter

system (W,S) and a subgroup WT we denote the set of cosets as follows:

W/WT = {wWT |w ∈W}.

The set of all spherical cosets is denoted WS:

WS =
⋃
T∈S

W/WT .

WS is partially ordered by inclusion and so can be considered as a poset. The group W acts

on the poset WS by left multiplication and the quotient poset is S.

Lemma 1.3.2 (see Davis [17, 4.1.6.(iii)]). Given T and U in S and w and v in W , the

cosets wWU and vWT satisfy wWU ⊆ vWT if and only if w−1v ∈WT and U ⊆ T .

Definition 1.3.3 (see Davis [17, 7.2]). We can associate to any poset P, its geometric

realisation. This is given by the geometric realisation of the abstract simplicial complex

Flag(P) which consists of all finite chains in P. The reader is directed to Appendix A of

Davis for more details.

Definition 1.3.4 (see Davis [17, 7.2]). One can associate to a Coxeter group a CW

complex called the Davis Complex. This is denoted ΣW and is the geometric realisation of

the poset WS. That is every spherical coset wWT is realised as a vertex or 0-simplex, and for

every ordered chain of (p + 1) spherical cosets, with p ≥ 0 there is a p-simplex in the Davis

Complex:

w0WT0 ⊂ w1WT1 ⊂ w2WT2 ⊂ · · · ⊂ wpWTp

where here wi is in W and Ti is in S for all 0 ≤ i ≤ p.
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Example 1.3.5. We work through the construction of the Davis complex for the Coxeter

group W = W (I2(3)) which we recall from Example 1.1.11 to be the dihedral group D6. Then

DW is given by

s t

and so spherical subgroups are given by the subdiagrams that correspond to finite subgroups,

that is

S = {∅, s, t, S}.

Considering the spherical cosets and inclusions, we have, for example, eW∅ ⊂ eWs ⊂ eWS and

so a 2-simplex is formed. Considering all such inclusions and constructing the Davis complex

gives the following:

eW∅sW∅

stW∅

tstW∅ tsW∅

tW∅eWS

eWs

sWt

stWs

tsWt

tWs

eWt

where the circles symbolise vertices, the arrows symbolise inclusions and 1-simplices and the

orange triangles symbolise 2-simplices. The Coxeter group W = W (I2(3)) acts on the Davis

complex by left multiplication of the cosets and the action of the two generators s and t on

the complex is shown below in blue:
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s

t

eW∅sW∅

stW∅

tstW∅ tsW∅

tW∅eWS

eWs

sWt

stWs

tsWt

tWs

eWt

Definition 1.3.6 (see Davis [17, A.1.1]). A convex polytope in an affine space A is the

convex hull of a finite subset of A. Its dimension is given by the dimension of the subspace of

A which it spans. Equivalently, a convex polytope may be defined as the compact intersection

of a finite set of half spaces in A.

Remark 1.3.7. A 0-dimensional convex polytope is a point, a 1-dimensional convex poly-

tope is a line segment, and a 2-dimensional convex polytope is a polygon. In general, a

k-dimensional convex polytope is homeomorphic to a k-disk.

Definition 1.3.8. For every finite Coxeter group W with generating set S, one can define

a canonical representation of the Coxeter group W on Rn, where n = |S| (see Davis section

6.12 for details). Given this representation, we define the Coxeter polytope, or Coxeter cell of

W to be the convex hull of the orbit of a generic point x in Rn under the W -action. This
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polytope has dimension n = |S|, and we denote it CW . A detailed definition can be found in

Davis section 7.3 [17].

Proposition 1.3.9. If W is a finite Coxeter group then ΣW , the geometric realisation of

WS, is isomorphic to the barycentric subdivision of the Coxeter cell CW .

Proof. The proof follows from Davis Lemma 7.3.3 [17]. �

Definition 1.3.10. A coarser cell structure can be given to ΣW by considering only those

spherical cosets which are present as subsets of a particular coset wWT . This is denoted

WS≤wWT
, and the realisation of this poset is a subcomplex of the realisation of WS, i.e. a

subcomplex of ΣW . In fact WS≤wWT
∼= WTST where ST denotes the set of spherical subsets

of T . Since WT is finite, the realisation of WTST , is isomorphic to the barycentric subdivision

of its Coxeter cell CWT
. Therefore the realisation is homeomorphic to a disk, i.e. |WTST | ∼=

D|T |. The cell structure on ΣW is therefore given by associating to the subcomplex WS≤wWT

its corresponding Coxeter cell: a p-cell where p = |T |. The 0-cells are given by cosets of

the form WS≤wW∅ , i.e. the set {wW∅|w ∈ W}, and therefore associated to elements of W

(recall W∅ = {e}). By Lemma 1.3.2 a set of vertices X will define a p-cell precisely when

X = {v ∈ W |v ∈ wWT } for T ∈ S and |T | = p. There is an action of W on the cells of ΣW

given by left multiplication, and this permutes the cells.

Example 1.3.11. We consider the above cell structure for our running example of W =

W (I2(3)), noting the action of the generators of W in blue. There are six 0-cells, six 1-cells and

one 2-cell, corresponding to spherical cosets with generating sets having 0, 1 and 2 elements

respectively.
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s

t

eW∅sW∅

stW∅

tstW∅ tsW∅

tW∅eWS

eWs

sWt

stWs

tsWt

tWs

eWt

Alongside the formulation and cell structure, we use the following results concerning the Davis

complex in Chapter 2.

Proposition 1.3.12 (Davis [17, 8.2.13]). For any Coxeter group W , ΣW is contractible.

Lemma 1.3.13 (Davis [17, 7.4.4]). If W and S decompose as W = U×V and S = SU ∪SV
then S = SU × SW and ΣW = ΣU × ΣV .



CHAPTER 2

Results: Low dimensional homology of Coxeter groups

In this chapter we prove two theorems which calculate the second and third integral

homology of a finite rank Coxeter group. These results arise from the computation of the

isotropy spectral sequence, for a contractible CW -complex upon which the Coxeter group acts,

called the Davis complex. For the degree three result, the spectral sequence computations

rely heavily on a free resolution for Coxeter groups, described by De Concini and Salvetti in

Cohomology of Coxeter groups and Artin groups [18].

2.1. Discussion of results

Given a Coxeter system (W,S), let the corresponding Coxeter diagram be denoted DW .

Let us first consider H1(W ;Z) = Wabelian, the abelianisation of W .

Definition 2.1.1 (see Brown [12, III.1]). Let G be a group and F be a projective reso-

lution of Z over ZG. For a G-module M we define the group homology of G with coefficients

in M to be

H∗(G;M) = H∗(F ⊗GM).

Lemma 2.1.2. Let (W,S) be a Coxeter system. Let s ∼ s′ if there is a sequence s =

s0, s1, . . . , sn = s′ of elements of S such that m(si, si+1) is an odd integer. Then ∼ defines

an equivalence relation on S and it follows that s and s′ represent the same element of the

abelianisation of W if and only if s ∼ s′.

Proof. From Lemma 3.3.3 in Davis [17], s ∼ s′ if and only if s and s′ are conjugate.

Since conjugate generators must be sent to the same element of the abelianisation the proof

follows. �

Corollary 2.1.3. As a consequence of Lemma 2.1.2, H1(W ;Z) can be described by delet-

ing even or infinite edges from the Coxeter diagram and counting the connected components

of the remaining diagram. If there are d components then it follows that

H1(W ;Z) = Wabelian = Zd2.

In [32], Howlett considers the Schur multiplier - which in this case is isomorphic to the

second homology group H2(W ;Z) - of finite rank Coxeter groups. We describe the result

below.

25
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Definition 2.1.4. Let S•• = {{s, t}|m(s, t) = 2} be the set consisting of unordered pairs

of commuting generators. Let {s, t} ≈ {s, t′} if both pairs belong to S••, and m(t, t′) is odd.

Let ∼ be the equivalence relation on S•• generated by ≈.

Let D•• be the graph with vertex set indexed by S•• and an edge between the two vertices

corresponding to {s, t} and {s, t′} if {s, t} ≈ {s, t′}. Then the equivalence classes of ∼ are

given precisely by the connected components of D••.
Let Dodd be the diagram obtained from DW by deleting all edges with an even label,

or with an ∞ label, and Deven similarly (here we also delete the unlabelled edges as they

correspond to m(s, t) = 3). Let E(DW ) and V (DW ) be the set of edges and set of vertices of

DW respectively. Let

• n1(W ) be the number of vertices of DW
• n2(W ) be the number of edges of DW carrying a finite weight

• n3(W ) be the number of equivalence classes of ∼ on S••
• n4(W ) be the number of connected components of Dodd.

Theorem 2.1.5 (Howlett [32]). The Schur multiplier of W is an elementary abelian 2-

group with rank

n2(W ) + n3(W ) + n4(W )− n1(W ).

The first theorem we prove in this text is a refinement of Howlett’s theorem, based on the

isotropy spectral sequence for the Davis complex, including a naturality statement.

Theorem 2.1.6. Given a finite rank Coxeter group W with diagram DW , there is a natural

isomorphism

H2(W ;Z) = H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where in the first and final term of the right-hand-side the diagrams are considered as simplicial

complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the

diagram).

Remark 2.1.7. The naturality statement comes from the fact that, given a full inclusion

of Coxeter groups U ↪→ W , there is a full inclusion of Coxeter diagrams DU ↪→ DW with

respect to which the assignments D 7→ Dodd, D 7→ Deven and D 7→ D•• are natural. That

is, a full inclusion DU ↪→ DW induces a full inclusion of the diagrams Dodd, Deven and D••.
The naturality of simplicial homology H∗(−;Z2) with respect to sub-complexes of simplicial

complexes therefore induces a component wise natural map on the right hand side of the

isomorphism.

Proposition 2.1.8. This theorem recovers Howlett’s theorem.

Proof. We compute the rank of each of the summand on the right hand side of Theorem

2.1.6.

• rank(H0(D••;Z2)) = n3(W ) by Definition 2.1.4.
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• rank(Z2[E(Deven)]) = |E(Deven)|.
• rank(H1(Dodd;Z2) = rank(ker(d1)/ im(d2)) = null(d1) − rank(d2) where d1 and d2

are the simplicial boundary maps:

C2(Dodd)
d2−→ C1(Dodd)

d1−→ C0(Dodd)

0
d2−→ Z2[E(Dodd)]

d1−→ Z2[V (Dodd)].
It follows that

– rank(d1) grows by 1 for each vertex connected to an edge in Dodd, subject to the

relation that the vertices of a component of Dodd are identified (this decreases

the dimension of the image by one for each non-trivial component of Dodd). A

vertex which is not connected to an edge in Dodd has its own component in Dodd.
Therefore rank(d1) = n1(W )− n4(W ).

– null(d1) + rank(d1) = dim(C1(Dodd)) = |E(Dodd)| so null(d1) = |E(Dodd)| −
rank(d1) = |E(Dodd)| − n1(W ) + n4(W )

– rank(d2) = 0.

– null(d1)− rank(d2) = |E(Dodd)| − n1(W ) + n4(W ).

Therefore the rank on the right hand side of Theorem 2.1.6 is given by

rank(H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2))

= rank(H0(D••;Z2)) + rank(Z2[E(Deven)]) + rank(H1(Dodd;Z2)))

= n3(W ) + |E(Deven)|+ |E(Dodd)| − n1(W ) + n4(W )

= n3(W ) + (|E(Deven)|+ |E(Dodd)|)− n1(W ) + n4(W )

= n3(W ) + n2(W )− n1(W ) + n4(W )

as required. �

Example 2.1.9. An example of Theorem 2.1.6 for an infinite Coxeter group can be found

in the introduction to this thesis.

Example 2.1.10. When the Coxeter group W is the finite group of type A3 we have that

DW is

s t u

and so Dodd is DW , Deven is

s t u

and D•• is

{s, u}
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Computing the terms in the right hand side of the isomorphism of Theorem 2.1.6 therefore

gives:

H2(W ;Z) = H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

= Z2 ⊕ 0⊕ 0

= Z2.

Example 2.1.11. Consider the Coxeter group W defined by the following diagram DW :

s t

u

v w
4

then the diagram Dodd is

s t

u

v w

the diagram Deven is

s t

u

wv
4

and the diagram D•• is

{s, w} {t, w}

{u,w}

{s, v}

{u, v}

Computing the terms in the right hand side of the isomorphism of Theorem 2.1.6 therefore

gives:

H2(W ;Z) = H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

= (Z2 ⊕ Z2)⊕ Z2 ⊕ Z2.

Using similar methods we compute the third homology of a finite rank Coxeter group.

In the majority of cases we have a full description for H3(W ;Z), and for a specific type of

Coxeter diagram we have the result modulo extensions. The statement of the theorem relies

on introducing more diagrams derived from the Coxeter Diagram DW , described below.

Definition 2.1.12. Suppose W is a finite rank Coxeter group and DW is its diagram. We

define diagrams that arise from DW as follows.
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• Dodd is the diagram with vertex set S and an edge between s and t in S if m(s, t) is

odd. For example when W is the Coxeter group of type B3 with diagram

s
4

t u

then Dodd is given by

s t u

• DA2 is the diagram with vertex set {{s, t} | s, t ∈ S, m(s, t) = 3} i.e. the set of pairs of

vertices which appear in an A2 subdiagram of DW . There is an edge between {s1, t1}
and {s2, t2} in DA2 if s1 = s2 and m(t1, t2) = 2 i.e. if the two A2 subdiagrams are not

equal, and fit into an A3 subdiagram of DW . For example when W is the Coxeter

group of type D4 with diagram

s

t

u v

then DA2 is given by

{s, u} {u, v}

{t, u}

• D even is the diagram with vertex set {{s, t, u} | s, t, u ∈ S, m(s, t) = m(s, u) =

2 and m(t, u) is even} i.e. the set of triples of vertices which appear in an A1×I2(2p)

subdiagram of DW . There is an edge between {s1, t1, u1} and {s2, t2, u2} in DA2 if

t1 = t2, u1 = u2 and and m(s1, s2) is odd i.e. if the two A1× I2(2p) subdiagrams are

not equal, and appear as subdiagrams of an I2(odd)× I2(even) subdiagram of DW .

For example when W is the Coxeter group of type B5 with diagram

s
4

t u v w

then D even is given by

{s, t, v} {s, t, w} {s, u, w}
• D•• is the diagram with vertex set {{s, t} | s, t ∈ S, m(s, t) = 2} i.e. the set of pairs

of commuting vertices which appear as an A1 × A1 subdiagram of DW . There is

an edge between {s1, t1} and {s2, t2} in D•• if s1 = s2 and m(t1, t2) is odd i.e. if

the two subdiagrams are not equal, and appear as subdiagrams of an A1 × I2(odd)

subdiagram of DW . For example when W is the Coxeter group of type H4 with

diagram
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s
5

t u v

then D•• is given by

{s, u}{s, v} {v, t}
• DA3 is the diagram with vertex set {{s, t, u} | s, t, u ∈ S, m(s, t) = m(t, u) =

3 and m(s, u) = 2} i.e. the set of triples of vertices which appear in an A3 sub-

diagram of DW . There is an edge between {s1, t1, u1} and {s2, t2, u2} in DA3 if

t1 = s2, u1 = t2 and m(s1, u2) = 2 i.e. if the two A3 subdiagrams are not equal, and

fit into an A4 subdiagram of DW . For example when W is the Coxeter group of type

A5 with diagram

s t u v w

then DA3 is given by

{s, t, u}
{t, u, v}

{u, v, w}

• D�
•• is the CW complex formed from the diagram D•• by attaching a 2−cell to every

square. Squares in D•• have the form

{s, t} {u, t}

{s, v} {u, v}
For example when W is the Coxeter group of type E6 with diagram

s t u

v

w x

then D�
•• is given by

{s, w} {t, x}

{t, w}

{s, x}

{s, u}{s, v}{t, v} {u, x} {x, v} {v, w}

Theorem 2.1.13. Given a finite rank Coxeter group W such that DW does not have a

subdiagram of the form Y t A1, where Y is a loop in the Coxeter diagram Dodd, there is an
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isomorphism

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

where each diagram is as described in Definition 2.1.12, and viewed as a simplicial complex.

In this equation, © denotes a known non-trivial extension of H0(DA3 ;Z2) by H0(D••;Z2)

given by the extension matrix XW defined in Definition 2.5.52.

If W is such that DW has a subdiagram of the form Y t A1 where Y is a 1-cycle in the

Coxeter diagram Dodd, then there is an isomorphism modulo extensions

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

⊕H1(D�
••;Z2),

where the unknown extensions involve the H1(D�
••;Z2) summand.

These results arise from computation of the isotropy spectral sequence, which will be

introduced in this Chapter, for the Davis complex ΣW . These computations rely heavily on

a free resolution for Coxeter groups as written by De Concini and Salvetti in Cohomology of

Coxeter groups and Artin groups [18]. We give some example computations below.

Example 2.1.14. An example of Theorem 2.1.13 for an infinite Coxeter group can be

found in the introduction to this thesis.

Example 2.1.15. Consider the Coxeter group W of type A3 defined by the following

diagram DW :

s t u

then the diagram Dodd is DW and the diagram D•• is

{s, u}
the diagram DA2 is

{s, t} {t, u}
the diagram DA3 is

{s, t, u}
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the diagram D�
•• = D•• and the diagram D even is the empty diagram. We also note that

there are no edges with label greater than 3, and no H3 or B3 subdiagrams. We see there is

no loop in the diagram Dodd and therefore we are in the first case of the theorem. Computing

the terms in the right hand side of the isomorphism of Theorem 2.1.13 therefore gives:

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

= Z2 ⊕ Z3 ⊕ 0⊕ 0

⊕ 0⊕ (Z2© Z2)

= Z2 ⊕ Z3 ⊕
⊕Z4

= Z12 ⊕ Z2.

Example 2.1.16. Consider the Coxeter group W defined by the following diagram DW :

s t

u

7

v w
4

then the diagram Dodd is

s t

u

7

v w

the diagram D•• is

{s, w} {t, w}

{u,w}

{s, v}

{u, v}

the diagram DA2 is

{s, t} {t, v} {s, u}
the diagram DA3 is

{s, t, v}

the diagram D�
•• = D•• and the diagram D even is
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{s, v, w}

{u, v, w}

We also note that there are two edges with label greater than 3, and one B3 subdiagram:

t v w
4

We see there is a loop in the diagram Dodd and a vertex disjoint from this loop (w) in DW ,

therefore we are in the second case of the theorem. Computing the terms in the right hand

side of the isomorphism of Theorem 2.1.13 therefore gives:

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

⊕H1(D�
••;Z2)

= (Z2 ⊕ Z2)⊕ (Z3 ⊕ Z3)⊕ (Z4 ⊕ Z7)⊕ (Z2)

(Z2)⊕ (Z2© (Z2 ⊕ Z2))

⊕Z2 modulo extensions

and here the extension (Z2© (Z2 ⊕ Z2)) is given by Z4 ⊕ Z2.

2.2. Outline of proof

We introduce the isotropy spectral sequence in Section 2.3, and specifically describe the

spectral sequence for the Davis complex of W , ΣW , in Section 2.3.14. This spectral sequence

abuts to the homology of the Coxeter groups, and in this section we give explicit formulas for

the groups on the E1 page of the spectral sequence, and the d1 differential, which is given by

a transfer map. We also introduce a pairing for the isotropy spectral sequence of the Davis

complex in Section 2.3.17, for use later on in the proof. Following this, Section 2.4 proves

Theorem 2.1.6 by computing the E2 page of the spectral sequence on a given diagonal, and

feeding these computations into the proof in Section 2.4.11.

For the computation of Theorem 2.1.13 in Section 2.5, much more machinery must be

used. In Section 2.5.1 the free resolution for finite Coxeter groups, of De Concini and Salvetti

[18], is introduced. In order to apply the transfer map to computations using this resolution,

a chain map between resolutions is computed in Section 2.5.8. Using these tools, the E2

page of the spectral sequence on a given diagonal is computed. Following this, Section 2.5.34

proves that all further differentials to and from this diagonal are zero. The possible extension
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problems arising on the limiting page at this diagonal are treated and discussed in Section

2.5.48 and all of the computations are fed into the proof of Theorem 2.1.13 in Section 2.5.58.

2.3. Introduction to the isotropy spectral sequence

During this chapter we use the spectral sequence associated to a group action on an acyclic

CW complex, given by Equation (7.10) in chapter VII of Brown Cohomology of Groups [12].

In this section we follow Brown to introduce this spectral sequence. We start with a short

diversion on extension of scalars and induction.

2.3.1. Induction.

Definition 2.3.2 (see Brown [12, III.3]). Given a ring homomorphism α : R→ S and an

R module M , we construct the tensor product S ⊗RM where S is considered an R module

via α, i.e. s · r = sα(r). This construction is called extension of scalars from R to S.

Definition 2.3.3 (see Brown [12, III.5]). Given the ring homomorphism ZH ↪→ ZG for

H a subgroup of G, extension of scalars is called induction from H to G. It is denoted as

follows

IndGHM := ZG⊗ZH M

Since the action of H on G is free, we can decompose IndGH(M) as a sum over left coset

representatives of H in G as follows

IndGHM = ZG⊗ZH M =
⊕

g∈G/H

g ⊗M.

where g ⊗ M is the set {g ⊗ m|m ∈ M}, which is isomorphic to M via the map which

forgets g. There is a canonical map i : M → (ZG ⊗ZH M) via i(m) = 1 ⊗ M and this

maps M isomorphically into the 1 ⊗M summand of the decomposition. Under the action

of G, g(1 ⊗ M) = g ⊗ M and so we can write each summand in the decomposition as a

transform of the canonical M sub-module under the G action. We therefore have the following

decomposition [12, III.5.1]

IndGH =
⊕

g∈G/H

gM.

We are interested in the case where N is a G-module whose underlying abelian group has a

decomposition N = ⊕
i∈I
Mi over an indexing set I. We require the action of G on N to satisfy

that g in G permutes the summands Mi in a way dictated by an action of G on I, and we

note that g may also act on the individual summand Mi non-trivially.

Proposition 2.3.4 (see Brown [12, III.5.4]). Suppose N and G are as above. Let Gi be

the stabiliser of i in I under the action of G, and let E be a set of orbit representatives. Then

Mi is a Gi-module and there is a G-isomorphism N ∼=
⊕
i∈E

IndGGiMi.
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We apply Proposition 2.3.4 to the case where X is a G-CW-complex, following Example

III.5.5(b) in Brown [12]. In this case the G module Cn(X) can be written as a direct sum of

copies of Z. There is one copy of Z, Zσ, for each n-cell of X, σ, and so

Cn(X) =
⊕

σ n−cell of X

Zσ.

We call Zσ the orientation module for the cell σ. It is the group Z = 〈−1, 1〉, with the

two generators corresponding to the two orientations of σ. The Zσ summands of Cn(X) are

permuted by G, according to the action of G on the set of n-cells. Let Gσ be the stabiliser of a

cell σ under the G action on the n-cells. Then Gσ acts on Zσ via g acting as +1 if g preserves

the orientation of σ and −1 otherwise. Letting On be the set of orbit representatives for the

action of G on the n-cells, and we apply the proposition to get

Cn(X) ∼=
⊕
σ∈On

IndGGσZσ.

We end this section with the statement of Shapiro’s Lemma:

Proposition 2.3.5 (Shapiro’s Lemma, see Brown [12, III.6.2]). If H ⊆ G is a subgroup

of G and M is an H-module then

H∗(H;M) ∼= H∗(G; IndGHM).

2.3.6. Spectral sequence of a double complex.

Definition 2.3.7 (see Brown [12, VII.3]). A double complex is a bi-graded module

(Cp,q)p,q∈Z with a horizontal differential ∂h : Cp,q → C(p−1),q and a vertical differential

∂v : Cp,q → Cp,(q−1) such that ∂h∂v = ∂v∂h. Given a double complex, the associated to-

tal complex TC is the chain complex defined by setting

(TC)n =
⊕
p+q=n

Cp,q

and setting the differential to be ∂|Cp,q = ∂h + (−1)p∂v.

Example 2.3.8. Given two chain complexes C1 and C2, one can define the double complex

Cp,q = C1
p ⊗ C2

q . The associated total complex is then the tensor product of chain complexes

C1 ⊗ C2.

Definition 2.3.9 (see Brown [12, III.1]). Let G be a group and F be a projective reso-

lution of Z over ZG. For a G-module M we define the group homology of G with coefficients

in M to be

H∗(G;M) = H∗(F ⊗GM).

We generalise this by considering a chain complex C = (Cn)n≥0 of G-modules as coeffi-

cients.



2.3. INTRODUCTION TO THE ISOTROPY SPECTRAL SEQUENCE 36

Definition 2.3.10 (see Brown [12, VII.5]). Let G, F and C as above. Then the group

homology of G with coefficients in C is given as

H∗(G;C) = H∗(F ⊗G C)

where F ⊗G C is the total complex of the double complex (F∗ ⊗G C∗).

Given a chain complex C = (Cn)n∈Z and a filtration FpC which is dimension-wise finite,

i.e. {Fp(Cn)}p∈Z is a finite filtration of Cn for each n, there exists a spectral sequence [12,

VII.2]

E1
pq = Hp+q(FpC/Fp−1C)⇒ Hp+q(C).

Combining this with Definition 2.3.7, we associate two spectral sequences to a double complex.

Given a double complex C = (Cp,q)p,q∈Z one can filter the total space TC by Fp((TC)n) =⊕
i≤p
Ci,n−i. This is finite in the case when C is a first quadrant double complex, i.e. Cp,q is only

non-zero for p and q both non-negative integers, and we will deal only with this case. Then

we have a spectral sequence with the following properties:

E0
pq = Cp,q d0 = ±∂v E1 = Hq(Cp,∗)⇒ Hp+q(TC)

where d1 is the map induced on E1 by ∂h.

One can also filter the total space TC by Fp((TC)n) =
⊕
j≤p

Cn−j,j , and this is also finite

when C is first quadrant. This gives the spectral sequence with the following properties:

(1) E0
pq = Cp,q d0 = ±∂h E1 = Hq(C∗,p)⇒ Hp+q(TC)

where d1 is the map induced on E1 by ∂v. Thus for a double complex there are two spectral

sequences which both converge to the homology of the total complex.

We are interested in the specific case of Definition 2.3.10 where the double complex arises

from F a projective resolution of Z over ZG for a group G and C a positive chain complex.

The double complex is therefore first quadrant with the form (Fp ⊗G Cq) and the second

spectral sequence in Equation (1) has the form [12, VII.5.(5.3)]

(2) E1
pq = Hq(F∗ ⊗G Cp) = Hq(G;Cp)⇒ Hp+q(F ⊗G C) = Hp+q(G;C)

where the d1 is the map induced on E1 by the chain differential ∂ : Cp → Cp−1.

2.3.11. Equivariant homology and the isotropy spectral sequence. We now fol-

low Section 7 in Chapter VII of Brown [12] and apply the previous theory to the study of

equivariant homology.

Definition 2.3.12. For G a group and X a G-complex, we define the equivariant homology

groups of (G,X) to be the homology of G with coefficients in the chain complex C(X) as in

Definition 2.3.10. We denote this:

HG
∗ (X;M) := H∗(G;C(X,M)).
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In this case Equation (2) gives the following spectral sequence:

E1
p,q = Hq(G;Cp(X,M))⇒ HG

p+q(X;M).

Consider now the left hand side. We have the following decomposition for Cp(X,M):

Cp(X,M) = Cp(X)⊗M =
⊕
σ∈Xp

Zσ ⊗M

where Zσ is the orientation module for σ, and Xp is the set of p-cells in X. Letting Mσ =

Zσ ⊗M and then applying the results on induction from Section 2.3.1 gives the following

decomposition:

Cp(X,M) =
⊕
σ∈Xp

Mσ =
⊕
σ∈Op

IndGGσMσ

where Op is a set of coset representatives for Xp with respect to the G-action.

We may now apply Shapiro’s Lemma (Proposition 2.3.5) to the E1 term of the spectral

sequence:

E1
p,q = Hq(G;Cp(X,M)) = Hq(G;

⊕
σ∈Op

IndGGσMσ)

=
⊕
σ∈Op

Hq(Gσ;Mσ)

so the spectral sequence has the form:

E1
p,q =

⊕
σ∈Op

Hq(Gσ;Mσ)⇒ HG
p+q(X;M).

We finish with the observation from Brown that should X be acyclic, we have

HG
∗ (X;M) ∼= H∗(G;M),

which gives the spectral sequence the form

(3) E1
p,q =

⊕
σ∈Op

Hq(Gσ;Mσ)⇒ Hp+q(G;M).

We let this spectral sequence be called the isotropy spectral sequence.

We now discuss the d1 differential for the isotropy spectral sequence, following Brown [12,

VII.8]. Consider the following diagram:
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E1
p,q

d1
// E1

p−1,q

Hq(G;Cp(X,M))
Hq(G;∂)

//

∼=
��

Hq(G;Cp−1(X,M))

∼=
��⊕

σ∈Op
Hq(Gσ;Mσ)

φ //
⊕

σ∈Op−1

Hq(Gσ;Mσ).

Here the central map from left to right is given by the fact that in Equation (2) the differential

on the E1 page is induced by the chain complex differential ∂ : Cp(X,M)→ Cp−1(X,M). We

will define a map φ on the bottom row such that under the vertical isomorphism, the map φ

gives the d1 differential (see Brown [12, VII.8.1]). We define φ in three stages

(1) Consider a p-cell σ and a (p − 1)-cell τ of X. Denote by ∂στ the component of

the differential ∂ : Cp(X,M) → Cp−1(X,M) restricted to σ in the source and τ in

the image. Recall that Cp(X,M) is a sum of modules Mσ for every p-cell σ and

so ∂στ : Mσ → Mτ . Let Fσ = {τ | ∂στ 6= 0}. This corresponds to (p − 1) cells

in the boundary of the p-cell σ. Then since Gσ is the stabilizer of σ, the set Fσ is

Gσ-invariant. Let Gστ = Gσ ∩Gτ . Then when τ is in Fσ the index of Gστ in Gσ is

finite. We can therefore define a transfer map

tστ : Hq(Gσ;Mσ)→ Hq(Gστ ;Mσ).

(2) Since ∂ is G-equivariant, it follows that ∂στ : Mσ →Mτ is Gστ -equivariant. Together

with the inclusion Gστ ↪→ Gτ this induces a map

uστ : Hq(Gστ ;Mσ)→ Hq(Gτ ;Mτ ).

(3) Under the isomorphism from the central to the bottom row of the diagram, we

are taking a sum over orbit representatives. It may be that Hq(Gτ ;Mτ ) is not a

summand on the E1 page, if τ is not a chosen orbit representative. Let τ0 be the

orbit representative for the G-orbit of τ (in Op−1), and choose g(τ) in G such that

g(τ)τ = τ0. Then there is an isomorphism Mτ → Mτ0 given by the action of g(τ)

on Cp−1(X,M) and this is compatible with the conjugation isomorphism Gτ → Gτ0
given by conjugating by g(τ). Together these give an isomorphism

vτ : Hq(Gτ ;Mτ )→ Hq(Gτ0 ;Mτ0).

Definition 2.3.13. Given the maps described above, the d1 differential of the isotropy

spectral sequence is

φ :
⊕
σ∈Op

Hq(Gσ;Mσ)→
⊕

σ∈Op−1

Hq(Gσ;Mσ)
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when on each summand of the left hand side we define φ to be

φ �Hq(Gσ ;Mσ)=
∑
τ∈F ′σ

vτuστ tστ

where F ′σ is the set of representative for the orbits of the cells in Fσ/Gσ.

2.3.14. Isotropy spectral sequence for the Davis Complex. We now apply the

isotropy spectral sequence in the case that the group is a Coxeter group W with generating

set S, the coefficient module is the integers Z and the W -CW-complex is the Davis complex

ΣW (introduced in Section 1.3).

Recall that the Davis complex is contractible (Proposition 1.3.12) and hence acyclic. Then

Equation (3) becomes

E1
p,q =

⊕
σ∈Op

Hq(Wσ;Zσ)⇒ Hp+q(W ;Z),

since Zσ ⊗ Z ∼= Zσ.

Recall that each p-cell of ΣW is represented by a spherical coset wWT where T has size p,

and the vertices of the cell are given by the set {wW∅|w ∈ wWT }. W acts by left multiplication

and so we can choose the orbit representatives of p-cells to be the cosets eWT where T has

size p. Recall that S is the set {T ⊂ S | WT is finite}. Hence the set of orbit representatives

Op is given by spherical subgroups WT with T in S having size p. The stabiliser of a cell

represented by a spherical subgroup WT under the W -action is WT itself, since the action of

W is given by left multiplication. Every member of the generating set T of WT acts on the

cell by reflection and therefore reverses the orientation of the cell. The action of an element

of WT on the orientation module will therefore be the identity if the element has even length,

or negation if the element has odd length. Under these choices, the isotropy spectral sequence

becomes

E1
p,q =

⊕
T∈S
|T |=p

Hq(WT ;ZT )⇒ Hp+q(W ;Z)

where we write ZT as the orientation module for the cell corresponding to WT . Putting this

together we get E1 page as shown in Figure 1.
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...
...

...
...

...
...

3 H3(W∅;Z∅)
d1

←− ⊕
t∈S

H3(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H3(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H3(WT ;ZT ) · · ·

2 H2(W∅;Z∅)
d1

←− ⊕
t∈S

H2(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H2(WT ;ZT ) · · ·

1 H1(W∅;Z∅)
d1

←− ⊕
t∈S

H1(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H1(WT ;ZT ) · · ·

0 H0(W∅;Z∅)
d1

←− ⊕
t∈S

H0(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H0(WT ;ZT ) · · ·

0 1 2 3 4

Figure 1. The E1 page of the isotropy spectral sequence for the Davis complex

Here the zeroth column only has one summand, since only the empty set satisfies the criteria

of generating a spherical subgroup and having size zero. In the first column, we note that all

generators in S generate a cyclic group of order two, which is finite and so we sum over all t

in S. The horizontal d1 maps are defined by applying the definition of the d1 differential for

the isotropy spectral sequence (Definition 2.3.13) in the specific case for the Davis complex

ΣW .

Proposition 2.3.15. In the isotropy spectral sequence for the Davis complex ΣW , denote

the d1 differential component restricted to the Hq(WT ;ZT ) component in the source and the

Hq(WU ;ZU ) in the target by d1
T,U . Then this map is non zero only when U ⊂ T and is given

by the following transfer map:

d1
T,U : Hq(WT ;ZT ) → Hq(WU ;ZU ).

On the chain level we compute Hq(WT ;ZT ) by computing homology of ZT ⊗WT
FWT

for FWT

a projective resolution of Z over ZWT . To define the transfer map we compute Hq(WU ;ZU )

by computing homology of ZU ⊗WU
FWT

for FWT
again a projective resolution of Z over ZWT .

The transfer map can then be defined on the chain level by the map below, where m⊗ x is in
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ZT ⊗ FWT
and WU\WT is a set of orbit representatives for WU in WT .

d1
T,U : m⊗ x 7→

∑
g∈WU\WT

m · g−1 ⊗ g · x.

Proof. Consider the three maps of Definition 2.3.13. Recall that an orbit representative

for a p-cell is given by eWT with T in S and |T | = p. The set FT = {U | ∂T,U 6= 0} is then given

by cosets wWU with |U | = (p−1) such that wWU ⊂WT , which is satisfied if and only if U ⊂ T
and w ∈ WT by Lemma 1.3.2. Since WT is the stabiliser of the cell eWT , this gives that the

orbit set ({U | ∂T,U 6= 0}/WT ) is given by {U | |U | = p−1 , U ⊂ T}. Since these are already in

the set of orbit representatives of (p− 1)-cells we have F ′T = {U | |U | = p− 1 , U ⊂ T} and so

the map φ restricted to the Hq(WT ;ZT ) summand maps only to summands Hq(WU ;ZU ) when

U ⊂ T . In other words, this gives that the isomorphism vτ in the definition of φ is the identity

map in this case, since the map vτ maps between (p− 1)-cells and their orbit representatives

and in this case the (p − 1)-cells we consider are already the orbit representatives. The

intersection Stab(WT )∩Stab(WU ) = WT ∩WU = WU and the action of WU on ZT is precisely

the action of WU on ZU . Therefore the map uστ in the definition of φ is also an isomorphism

and it follows that

φ �Hq(Gσ ,Mσ) =
∑
τ∈F ′σ

vτuστ tστ

φ �Hq(WT ;ZT ) =
∑
U∈F ′T

tT,U

where tT,U is the transfer map

tT,U : Hq(WT ;ZT )→ Hq(WU ;ZU ).

Note that cycles in Hq(WT ;ZT ) are represented by chains in ZT ⊗ FWT
where FWT

is a

projective resolution of Z over ZWT
. Letting m ⊗ x be an element on the chain level yields

the formula, where the transfer map on the chain level is computed via Brown [12, III.9]. �

Since we are interested in H2(W ;Z) and H3(W ;Z) we wish to consider the groups on the

red diagonal of Figure 1 at E∞ for H2 and the blue diagonal of Figure 1 for H3. We are

summing over finite Coxeter groups with generating set a certain size, and the classification

of finite Coxeter groups from Theorem 1.1.12 provides a finite selection of possible groups for

each size of generating set. Therefore there is a finite number of calculations to do in order

to find an E1 term in general.

Lemma 2.3.16. Let V ↪→W be an inclusion of Coxeter groups satisfying that V is parabolic

i.e. that the generating set for V , SV , is a subset of the generating set for W , S and DV is a

full subdiagram of DW . Then there is a map of isotropy spectral sequences

E(V )→ E(W )
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which is an inclusion on the E1 page.

Proof. The inclusion j : V ↪→ W induces an inclusion WV SV ⊂ WS, since SV is a

subset of S and therefore SV is a subset of S. This induces a map between the realisations

i : ΣV ↪→ ΣW , and therefore a map between the chains on p-cells Cp(ΣV ,Z)
i∗−→ Cp(ΣW ,Z).

We therefore have the following diagram:

E1
p,q(V ) // E1

p,q(W )

Hq(V ;Cp(ΣV ,Z))
Hq(j∗;i∗) //

∼=
��

Hq(W ;Cp(ΣW ,Z))

∼=
��⊕

U∈SV
|U |=p

Hq(WU ;ZU ) //
⊕

T∈S
|T |=p

Hq(WT ;ZT )

where the dotted map is induced by the map on p-cells on the central row. Every spherical

subgroup of V will also be a spherical subgroup of W , since it is a full inclusion, and this will

correspond to a map between the p-cells representing these spherical subgroups. We therefore

have

E1
p,q(V ) ↪→ E1

p,q(W )⊕
U∈SV
|U |=p

Hq(WU ;ZU ) ↪→
⊕
T∈S
|T |=p

Hq(WT ;ZT ).

Since the d1 differential is defined via the transfer map on each summand, all d1 differentials

in E(V ) will map under the inclusion to the same differential in E(W ). The inclusion on the

E1 page therefore induces a map of spectral sequences on further pages. This completes the

proof. �

2.3.17. Pairings on the isotropy spectral sequence. We now consider a pairing of

spectral sequences, for use in Section 2.5.34. We follow May’s A Primer on Spectral Sequences

[37] and recall Section 4 on products. For filtered complexes A, B and C, if a pairing

A⊗B → C

is a morphism of filtered complexes, i.e. if FpA ·FqB ⊂ Fp+qC, then this induces a morphism

of spectral sequences

Er(A⊗B)→ Er(C).

Combining this with the Künneth map Er(A) ⊗ Er(B) → Er(A ⊗ B) (which is induced by

the Künneth map on homology on the E1 page) defines a pairing

φ : Er(A)⊗ Er(B)→ Er(C)
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which satisfies a Leibniz formula for differentials, i.e. for x in Er(A) and y in Er(B) the

pairing satisfies

drC(φ(x⊗ y)) = φ(drA(x)⊗ y) + (−1)deg(x)φ(x⊗ drB(y)).

Consider the product of two finite Coxeter groups WU and WV . Then WU ×WV = WX

for X = U t V as in Section 1.2. For the following notation let WI be the Coxeter group

corresponding to I ∈ {V,U,X}. Let SI be the generating set of WI and let SI be S for the

Coxeter system (WI , I) (see Definition 1.2.11). Let ΣI be the Davis complex ΣWI
and F I be

a projective resolution of Z over ZWI . Let E(I) denote the isotropy spectral sequence for WI .

Then E(I) is the spectral sequence related to the double complex F I ⊗C(ΣI ,Z). Denote the

double complex by Ip,q and the associated total complex TI. Then (TI)n =
⊕

p+q=n
Ip,q and for

the spectral sequence E(I) the total space TI is given the filtration Fp((TI)n) =
⊕
i≤p
In−i,i.

Lemma 2.3.18. The product map WU ×WV →WX defines a map on chain complexes

Ci(ΣU ,Z)⊗ Cj(ΣV ,Z)→ Ci+j(ΣX ,Z).

Proof. With notation as above, the product map induces a map of posets

WUSU ×WV SV → WXSX
(uWTU , vWTV ) 7→ uv(WTUtTV ).

This in turn induces a map on their realisations

ΣU × ΣV → ΣX ,

which is the map that gives the decomposition ΣX = ΣU ×ΣV from Lemma 1.3.13. Consider

Ci(ΣI ,Z) and note that p-cells of ΣI are represented by cosets wWT where T ∈ SI . Given an

i-cell of ΣU represented by uWT1 and a j-cell of ΣV represented by vWT2 we use the above

poset map and define an (i + j)-cell of ΣX represented by uvWT1tT2 . This gives a pairing

Ci(ΣU ,Z)⊗ Cj(ΣV ,Z)→ Ci+j(ΣX ,Z). �

Theorem 2.3.19. With the above notation, we can apply the hypothesis of May [37,

Section 4] (that we have a morphism of filtered complexes) and conclude that there is a pairing

Φ : Er(U)⊗ Er(V )→ Er(X)

under which the differentials satisfy a Leibniz formula. Under the decomposition on the E1

page of the spectral sequence (Figure 1)

E1
p,q(I) = Hq(F

I
∗ ⊗WI

Cp(ΣI ,Z)) ∼=
⊕
Ī∈SI
|Ī|=p

Hq(WĪ ;ZĪ)
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this pairing induces a pairing Φ∗, which is given by the Künneth map when restricted to

individual summands

Φ∗ : Hq(WŪ ;ZŪ )⊗Hq′(WV̄ ;ZV̄ )
×→ Hq+q′(WŪ ×WV̄ ;ZŪ ⊗ ZV̄ )

∼=→ Hq+q′(WX̄ ;ZX̄)

and it follows that the differentials in the isotropy spectral sequence for the Davis complex

satisfy a Leibniz formula with respect to the pairing Φ∗.

Proof. To show that Φ is a pairing we must show that the map

TU ⊗ TV → TX

is a morphism of filtered complexes. We have on the nth-chain level that

Fp((TI)n) =
⊕
i≤p

In−i,i =
⊕
i≤p

F In−i ⊗ Ci(ΣI ,Z)

for I in {U, V,X}. Since WU and WV are subgroups of WX such that WU ×WV = WX , there

is a pairing from FUk ⊗ F Vl → FXk+l (for example by taking FX = FU ⊗ F V by Brown [12,

V.1.1]). Putting this together with the pairing Ci(ΣU ,Z) ⊗ Cj(ΣV ,Z) → Ci+j(ΣX ,Z) from

the previous lemma gives

Fp(TU) · Fq(TV ) ⊂ Fp+q(TX)

as required in [37]. We now consider this pairing under the decomposition on the E1 page of

the isotropy spectral sequence for a Coxeter group WI , shown in Figure 1:

E1
p,q(I) = Hq(F

I
∗ ⊗WI

Cp(ΣI ,Z)) ∼=
⊕
Ī∈SI
|Ī|=p

Hq(WĪ ;ZĪ)

and described in Section 2.3.14. Under this decomposition the map from a single summand

on the right of the isomorphism, to the left of the isomorphism, is given by the following map

ι∗, induced by ι:

F T∗ ⊗WT
Cp(ΣT ,ZT )

ι // FW∗ ⊗W Cp(ΣW ,Z)

Hq(F
T
∗ ⊗WT

Cp(ΣT ,ZT ))
ι∗ // Hq(F

W
∗ ⊗W Cp(ΣW ,Z))

Hq(WT ;ZT ) // Hq(F
W
∗ ⊗W Cp(ΣW ,Z)).

If a Coxeter group WX arises as a product WX = WU ×WV then the pairing Φ, along with

the decomposition for each group WU , WV , and WX gives the following diagram
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(E1
p,q(U)

⊗
E1
p′,q′(V ))

Φ // E1
(p+p′),(q+q′)(X)

(Hq(F
U
∗ ⊗WU

Cp(ΣU ,Z))
⊗

Hq′(F
V
∗ ⊗WV

Cp′(ΣV ,Z)))
Φ // Hq+q′(F

X
∗ ⊗WX

Cp+p′(ΣX ,Z))

(
⊕

Ū∈SU
|Ū |=p

Hq(WŪ ;ZŪ )
⊗

∼=⊕ι∗

OO

⊕
V̄ ∈SV
|V̄ |=p′

Hq′(WV̄ ;ZV̄ ))

∼=⊕ι∗

OO

Φ∗ //
⊕

X̄∈SX
|X̄|=p+p′

Hq+q′(WX̄ ;ZX̄).

∼=⊕ι∗

OO

The map Φ∗ is then induced by Φ and the two vertical isomorphisms. The isomorphisms are

induced by the component-wise inclusions given by ι∗ on each summand. Since the pairing Φ

is defined by the pairings FUk ⊗ F Vl → FXk+l and Ci(ΣU ,Z)⊗Cj(ΣV ,Z)→ Ci+j(ΣX ,Z), then

component wise, the map Φ∗ is given on each summand of⊕
Ū∈SU
|Ū |=p

Hq(WŪ ;ZŪ ) and
⊕

V̄ ∈SV
|V̄ |=p′

Hq′(WV̄ ;ZV̄ ) by the composite

Hq(WŪ ;ZŪ )⊗Hq′(WV̄ ;ZV̄ )
×→ Hq+q′(WŪ ×WV̄ ;ZŪ ⊗ ZV̄ )

∼=→ Hq+q′(WX̄ ;ZX̄)

where here X̄ is defined such that WŪ × WV̄ = WX̄ . Here the first map is given by the

homology cross product (see [12, V.3]), and the second map is given by the fact that if

WŪ ×WV̄ = WX̄ then the orientation modules satisfy ZŪ ⊗ ZV̄ ∼= ZX̄ . This map is precisely

the Künneth map on homology. Extending this component wise definition to a definition on

the tensor product of the summations, gives the map Φ∗ that lifts to the map Φ on the top

row.

This pairing on the decomposition at the E1 page of the isotropy spectral sequence for

the Davis complex will therefore induce a pairing on the Er page and it follows that the

differentials in the isotropy spectral sequence for the Davis complex satisfy a Leibniz property

with respect to the pairing Φ∗. �

2.4. Calculation for H2(W ;Z)

From Section 2.3.14, we have a spectral sequence with E1 page the following
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...
...

...
...

...
...

3 H3(W∅;Z∅)
d1

←− ⊕
t∈S

H3(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H3(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H3(WT ;ZT ) · · ·

2 H2(W∅;Z∅)
d1

←− ⊕
t∈S

H2(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H2(WT ;ZT ) · · ·

1 H1(W∅;Z∅)
d1

←− ⊕
t∈S

H1(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H1(WT ;ZT ) · · ·

0 H0(W∅;Z∅)
d1

←− ⊕
t∈S

H0(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H0(WT ;ZT ) · · ·

0 1 2 3 4

and the E∞ page will give us filtration quotients of H2(W ;Z) on the red diagonal. In this

section we compute the red diagonal on the E2 page and note that no further differentials

map from non zero groups onto this diagonal. The E2 computation therefore gives us the

limiting groups on the red diagonal and the result follows.

2.4.1. Homology at E1
0,2. The E1

0,2 term is given by H2(W∅;Z∅). From Definition 1.1.2,

W∅ is the Coxeter group with no generators, i.e. the trivial group, and so H∗(W∅;Z∅) is zero

for ∗ > 0. Hence E1
0,2 is zero, and so E2

0,2 and E∞0,2 are zero.

2.4.2. Homology at E1
1,1. The E1

1,1 term is given by

E1
1,1 = ⊕

t∈S
H1(Wt;Zt).

Each individual summand H1(Wt;Zt) is the homology of the group Wt, i.e. the Coxeter group

with single generator t and relation t2 = e (i.e. the finite Coxeter group W (A1)). Hence we are

considering the homology of a cyclic group of order 2, with coefficients in a Zt module given

by the integers with action where the non-trivial group element t acts on Zt by negation.

Lemma 2.4.3. With notation as above,

H1(Wt;Zt) = 0.

Proof. This follows from taking the standard projective resolution for a cyclic group of

order 2, tensoring with the coefficient module and calculating homology. It also follows from

the resolution introduced later in Section 2.5.1 and in particular Example 2.5.6. �
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Since E1
1,1 is a sum of groups which are all zero, we conclude that E1

1,1 = ⊕
t∈S

H1(Wt;Zt)

is zero, and hence E2
1,1 and E∞1,1 are zero.

2.4.4. Homology at E1
2,0. We finally consider the homology at E1

2,0, which is given by

E1
2,0 = ⊕

T∈S
|T |=2

H0(WT ;ZT ).

Since the other groups on the red diagonal in the spectral sequence are zero, this will be the

only contributing group to the red diagonal on the E∞ page. We start by computing E2
2,0,

which is given by the homology of the following sequence

⊕
t∈S

H0(Wt;Zt) ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H0(WT ;ZT ).
d1
oo

Recall that the d1 differential is given by the transfer map defined in Proposition 2.3.15, where

the transfer map restricted to the summand corresponding to a spherical subgroup WT maps

into summands corresponding to the spherical subgroup WU , only when U is a subset of T ,

and this map is given on the chain level by:

d1
T,U : Hq(WT ;ZT ) → Hq(WU ;ZU )

m⊗ x 7→
∑

g∈WU\WT

m · g−1 ⊗ g · x.

Lemma 2.4.5. For all T in S, such that |T | > 0,

H0(WT ;ZT ) = Z2.

Proof. This follows from the definition of group homology with coefficients in a module,

see [12, III.1.(1.5)]. The zeroth homology is given by the coinvariants of the module under

the group action:

H0(G;M) = MG

= Z⊗ZGM.

Since in our case the module is the integers and each group generator acts as multiplication

by −1 we compute homology to be the group Z2. �

Lemma 2.4.6. Applying the definition of the transfer map for the bottom (H0(WT ;ZT ))

row of the spectral sequence, and letting the generator of H0(WT ;ZT ) = Z2 be denoted by 1T
gives the following map, when T ′ is a subset of T .

d1
T,T ′ : H0(WT ;ZT ) → H0(WT ′ ;ZT ′)

Z2 → Z2

1T 7→
{

0 if |WT |/|WT ′ | is even

1T ′ if |WT |/|WT ′ | is odd.
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Proof. From Brown [12, III.9.(B)] we know for H a subgroup of G, the transfer map

acts on coinvariants as

tr : MG → MH

m 7→
∑

g∈H\G

gm

where m and m denote the image of m in MG, or MH . In our case this gives

d1
T,T ′ : H0(WT ;ZT ) → H0(WT ′ ;ZT ′)

Z2 → Z2

1T 7→
∑

g∈WT ′\WT

1T ′

since g · 1 = ±1 is in the class of 1 in ZT ′/WT ′ . Noting that we are mapping into a Z2 and

the number of entries in the sum is |WT |/|WT ′ | completes the proof. �

For X ∈ S, let 1X be the generator for the summand H0(WX ,ZX) in ⊕
T∈S

H0(WT ;ZT ).

Lemma 2.4.7. With notation as above, when T ′ has size 1 and T = {s, t} has size 2 the

transfer map d1 restricted to the T summand is given by

d1 �H0(WT ;ZT ) (1T ) =

{
1s + 1t if m(s, t) odd

0 if m(s, t) even.

Proof. Note that |Wx| is 2 for all x ∈ S and since W{s,t} is a dihedral group, |W{s,t}|
is 2 × m(s, t). Then |W{s,t}|/|Wx| = m(s, t) for x ∈ {s, t}, and we apply Lemma 2.4.6 to

compute the differential. �

Definition 2.4.8. We say that a Coxeter group with generating set T = {s, t, u} is of

type X if the Coxeter diagram has the form:

s

p odd

t u

i.e. if WT = W (I2(p))×W (A1) and p is odd.

Lemma 2.4.9. If T ′ has size 2 and T = {s, t, u} has size 3 the transfer map d1 restricted

to the T summand is given by

d1 �H0(WT ;ZT ) (1T ) =

{
1{s,u} + 1{t,u} if WT is of type X

0 otherwise.

Proof. When T = {s, t, u} andWT is finite, there are a finite number of Coxeter diagrams

that may represent WT , given by groups and products of groups in the classification of finite

Coxeter groups (Theorem 1.1.12). The order of these groups and their size two subgroups is
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documented in the table below, where we recall that W (A1)×W (A1)×W (A1) = W (I2(2))×
W (A1) and so this group is included in the final case.

WT DW |WT | |W{s,t}| |W{s,u}| |W{t,u}|
W (A3)

s t u
24 6 4 6

W (D3)
s

4
t u

48 8 4 6

W (H3)
s

5
t u

120 10 4 6

W (I2(p))×W (A1)
s
p

t u
4p 2p 4 4

Calculating |WT |/|WT ′ | in each of these cases therefore gives an even answer (and hence a

zero transfer map) unless we are in the final case W (I2(p)) ×W (A1) and p is odd. In this

case the maps to the subgroups generated by {s, u} and {t, u} are non-zero. �

We now consider the homology at E1
2,0, using our calculations of the transfer maps.

Proposition 2.4.10. The homology at E1
2,0:

⊕
t∈S

H0(Wt;Zt) ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H0(WT ;ZT ).
d1
oo

is given by

H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where the diagrams are as defined in Definition 2.1.4 and are viewed as 1-dimensional com-

plexes.

Proof. Considering the calculations of the transfer maps in Lemmas 2.4.7 and 2.4.9 a

splitting is observed. This is outlined in the diagram below.
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⊕
T∈S
|T |=3

H0(WT ;ZT )

����

d1
// ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

// ⊕
t∈S

H0(Wt;Zt)

⊕
WT type X

H0(WT ;ZT )
d1

// ⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )

⊕

⊕
T={s,t}

m(s,t)6=2 even

H0(WT ;ZT )

⊕

⊕
T={s,t}
m(s,t) odd

H0(WT ;ZT )
d1

// ⊕
t∈S

H0(WT ;ZT )

and calculating the homology of the top row in turn gives a splitting

coker
(

⊕
WT type X

H0(WT ,ZT )
d1

→ ⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )
)

⊕
⊕

T={s,t}
m(s,t)6=2 even

H0(WT ;ZT )

⊕
ker
(

⊕
T={s,t}
m(s,t) odd

H0(WT ;ZT )
d1

→ ⊕
t∈S

H0(WT ;ZT )
)
.

We now define an isomorphism ε = ε1 ⊕ ε2 ⊕ ε3 from these three groups, to the three groups

in the statement of the proposition:

H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2).

We do this here in heavy detail, as this splitting technique is used regularly within the results

of this chapter. For Z2[E(Deven)], let {s, t} be the basis element corresponding to the edge

between s and t, and note that edges only exist if m(s, t) is even and greater than 2. Recall
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that we denote the generator for H0(WT ;ZT ) = Z2 by 1T . Then ε2 is defined by

ε2 : ⊕
T={s,t}

m(s,t) 6=2,even

H0(WT ;ZT ) → Z2[E(Deven)]

1{s,t} 7→ {s, t}

and we note here that ε2 is an isomorphism on inspection.

For H1(Dodd;Z2), note that when viewed as a simplicial complex, Dodd has no 2-cells,

so H1(Dodd;Z2) = ker(d : C1 → C0) for the simplicial differential d. Here C1 is generated

by edges {s, t} between vertices s and t where m(s, t) is odd, i.e. C1 = Z2[E(Dodd)] and C0

is generated by the vertices of Dodd, given by the generating set S of W , i.e. C0 = Z2[S].

Moreover d({s, t}) = s + t. Recall from Lemma 2.4.7 that the transfer map is given on

summands H0(W{s,t};ZT ) by d1(1{s,t}) = 1s + 1t if m(s, t) is odd. Therefore we can define a

chain map:

⊕
T={s,t}
m(s,t) odd

H0(WT ;ZT ) → Z2[E(Dodd)]

1{s,t} 7→ {s, t}

and this map induces an isomorphism between homologies, ε3:

ε3 : ker
(

⊕
T={s,t}
m(s,t)odd

H0(WT ;ZT )
d1

→ ⊕
t∈S

H0(WT ;ZT )
)
→ H1(Dodd;Z2)

ker
(

⊕
T={s,t}
m(s,t)odd

H0(WT ;ZT )
d1

→ ⊕
t∈S

H0(WT ;ZT )
)
→ ker(d : Z2[E(Dodd)]→ Z2[S]).

The map between the first groups is as follows:

ε1 : coker
(

⊕
WT type X

H0(WT ,ZT )
d1

→ ⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )
)
→ H0(D••;Z2)

1{s,t} 7→ [{s, t}],

where [{s, t}] is the generator for the summand of H0(D••;Z2) corresponding to the connected

component containing {s, t} (i.e. the component whose vertices are labelled by {s′, t′} with

{s′, t′} equivalent under the relation ≈ to {s, t}).
Recall from Lemma 2.4.9 that the transfer map is given on summands H0(W{s,t,u};ZT )

by d1(1{s,t,u}) = 1{s,u} + 1{t,u} if WT is of type X. Therefore generators of H0 for triples of

type X get mapped to sums of generators of H0 corresponding to commuting pairs (elements

of S••) which are equivalent to each other under ∼, i.e. they are in the same component of

D••. Therefore the map ε1 is well defined and moreover it is an isomorphism. This concludes

the proof. �
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2.4.11. Proof of Theorem A.

Theorem 2.4.12. Given a finite rank Coxeter group W with diagram DW , recall from

Definition 2.1.4 the definition of the diagrams D••, Dodd and Deven. Then there is a natural

isomorphism

H2(W ;Z) = H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where in the first and final term of the right-hand-side the diagrams are considered as simplicial

complexes consisting of 0-simplices (vertices of the diagram) and 1-simplices (edges of the

diagram).

Proof. The red diagonal of the isotropy spectral sequence in Figure 1 gives filtration

quotients of H2(W ;Z) on the E∞ page. The E2 page is as follows:

3 ?
...

2 0 ?
...

1 0 0 ?
...

0 ? ? H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2) · · ·

0 1 2 3

Here all differentials dr for r ≥ 2 with source or target the E2,0 position either originate at,

or map to a zero group. Therefore the red diagonal on the limiting E∞ page is given by the

diagonal on the E2 page. Since there is only one non zero group on the diagonal, there are

no extension problems and this group gives H2(W ;Z) as required. �

2.5. Calculation for H3(W ;Z)

The isotropy spectral sequence for the Coxeter group W has E1 page the following
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...
...

...
...

...
...

3 H3(W∅;Z∅)
d1

←− ⊕
t∈S

H3(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H3(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H3(WT ;ZT ) · · ·

2 H2(W∅;Z∅)
d1

←− ⊕
t∈S

H2(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H2(WT ;ZT ) · · ·

1 H1(W∅;Z∅)
d1

←− ⊕
t∈S

H1(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H1(WT ;ZT ) · · ·

0 H0(W∅;Z∅)
d1

←− ⊕
t∈S

H0(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H0(WT ;ZT ) · · ·

0 1 2 3 4

and the E∞ page gives us H3(W ;Z) (up to extension) on the blue diagonal.

2.5.1. Free resolution for Coxeter groups. In this section we follow the paper Co-

homology of Coxeter and Artin groups by De Concini and Salvetti [18]. They describe a free

resolution of Z over ZW for a finite Coxeter group W with generating set S. We will use this

throughout this section to calculate the low dimensional homologies of finite Coxeter groups

that appear as summands in the entries of the spectral sequence.

The free resolution is denoted (C∗, δ∗) and defined as follows: Ck is a free ZW module

with basis elements e(Γ) for Γ a flag of subsets of S with cardinality k, that is Γ in Sk where:

Sk := {Γ = (Γ1 ⊃ Γ2 ⊃ · · · ) | Γ1 ⊂ S,
∑
i≥1

|Γi| = k}.

The differential is defined using minimal left coset representatives of parabolic subgroups. For

τ in Γi, let W
Γi\{τ}
Γi

be the set of minimal left coset representatives of WΓi\{τ} in WΓi . Then

δk : Ck → Ck−1 is ZW linear and defined as follows

(4) δke(Γ) =
∑
i≥1

|Γi|>|Γi+1|

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

where the flag Γ′ in Ck−1 is given by

Γ′ := (Γ1 ⊃ · · · ⊃ Γi−1 ⊃ (Γi\{τ}) ⊃ β−1Γi+1β ⊃ β−1Γi+2β ⊃ · · · )
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and the exponent α(Γ, i, τ, β) is given by a formula in terms of Γ, i, τ and β which we define

below. This is well defined from Lemma 1.2.6. We choose an ordering for the set of generators

S and let σ(β,Γk) be the number of inversions, with respect to this ordering, in the map

Γk → β−1Γkβ. We let µ(Γi, τ) be the number of generators in Γi which are less than or equal

to τ in the ordering on S. Given this, the exponent is described by the following formula:

α(Γ, i, τ, β) = i · `(β) +
i−1∑
k=1

|Γk|+ µ(Γi, τ) +
d∑

k=i+1

σ(β,Γk).

During this proof we adopt the convention that the generators are always ordered alphabet-

ically (e.g. s < t < u). We also denote the generator corresponding to a flag of length d,

(Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γd) by ΓΓ1⊃Γ2⊃···⊃Γd , where we omit the set notation for each Γi. For

example Γs, Γs⊃s, or Γs,t⊃s (which corresponds to Γ = {s, t} ⊃ {s}).

Lemma 2.5.2. In all computations of the differential δp for 0 ≤ p ≤ 4,

d∑
k=i+1

σ(β,Γk) = 0.

Proof. The differential δp : Cp → Cp−1 is nonzero when for some i ≥ 0 we have |Γi| >
|Γi+1|, and the sum

d∑
k=i+1

σ(β,Γk)

is over k where k starts at i + 1 and ends at d, for the flag ΓΓ1⊃Γ2⊃···⊃Γd . Therefore there

are no terms in this sum unless Γi+1 is non-empty. Let s, t, u be in the generating set S.

Generators in C0 have the form Γ∅, in C1 have the form Γs, and in C2 have the form Γs⊃s
or Γst. Therefore none of these generators satisfy |Γi| > |Γi+1| for Γi+1 non-empty. The only

generators in C3 and C4 which satisfy the property are Γst⊃s in C3 or Γst⊃s⊃s and Γstu⊃s in

C4. For all of these generators, the property is satisfied for Γi+1 a singleton. Since σ(β,Γk)

calculates the number of inversions in the map Γk → β−1Γkβ from this singleton to another

set, the number of inversions will be zero since an inversion can only take place when there

are two or more elements in the source set. This completes the proof. �

We therefore omit the σ(β,Γk) term from our calculations in this chapter, as we only ever

calculate differentials δp for 0 ≤ p ≤ 4.

Example 2.5.3. We give an example of the resolution for finite Coxeter groups with one

generator S = {s}, from C3 to C0.
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C3
δ3 // C2

δ2 // C1
δ1 // C0

Generators:

Γs⊃s⊃s Γs⊃s Γs Γ∅

Differentials: Γs
� / (s− 1)Γ∅

Γs⊃s
� / (1 + s)Γs

Γs⊃s⊃s
� / (s− 1)Γs⊃s

The differential from Γs to Γ∅ is given by the following formula, noting that coset representa-

tives of W∅ in Ws are e and s. We recall the formula for δk(e(Γ)) from Equation (4).

δ1(Γs) =
∑
i=1

∑
s

∑
β=e,s

(−1)α(Γs,1,s,β)βΓ∅

=
∑
β=e,s

(−1)α(Γs,1,s,β)βΓ∅

= (−1)1eΓ∅ + (−1)2sΓ∅

= (s− 1)Γ∅

where we compute

α(Γs, 1, s, e) = 1`(e) +
0∑

k=1

|Γk|+ µ(s, s)

= 0 + 0 + 1

= 1

α(Γs, 1, s, s) = 1`(s) +
0∑

k=1

|Γk|+ µ(s, s)

= 1 + 0 + 1

= 2.
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Similarly the differential δ2 : C2 → C1 is given by

δ2(Γs⊃s) =
∑
i=2

∑
s

∑
β=e,s

(−1)α(Γs⊃s,2,s,β)βΓs

=
∑
β=e,s

(−1)α(Γs⊃s,2,s,β)βΓs

= (−1)2eΓs + (−1)4sΓs

= (1 + s)Γs

where we compute

α(Γs⊃s, 2, s, e) = 2`(e) +

1∑
k=1

|Γk|+ µ(s, s)

= 0 + 1 + 1

= 2

α(Γs⊃s, 2, s, s) = 2`(s) +

1∑
k=1

|Γk|+ µ(s, s)

= 2 + 1 + 1

= 4.

Finally, the differential δ3 : C3 → C2 is given by

δ3(Γs⊃s⊃s) =
∑
i=3

∑
s

∑
β=e,s

(−1)α(Γs⊃s⊃s,3,s,β)βΓs⊃s

=
∑
β=e,s

(−1)α(Γs⊃s⊃s,3,s,β)βΓs⊃s

= (−1)3eΓs⊃s + (−1)6sΓs⊃s

= (s− 1)Γs⊃s

where we compute

α(Γs⊃s⊃s, 3, s, e) = 3`(e) +
2∑

k=1

|Γk|+ µ(s, s)

= 0 + 2 + 1

= 3
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α(Γs⊃s⊃s, 3, s, s) = 3`(s) +

2∑
k=1

|Γk|+ µ(s, s)

= 3 + 2 + 1

= 6.

Definition 2.5.4. Define p(s, t; j) to be the alternating product of s and t of length j,

ending in an s (as opposed to π(s, t; j) which is the alternating product starting in an s) i.e.

p(s, t; j) =

length j︷ ︸︸ ︷
. . . sts

Example 2.5.5. We give an example of the resolution for finite Coxeter groups with two

generators S = {s, t}, from C3 to C0 and with m(s, t) finite. Here, the resolution is given

on a landscape page for ease of reading, and the calculations of the differentials are given in

Appendix B.
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C3
δ3 // C2

δ2 // C1
δ1 // C0

Generators:

Γs⊃s⊃s Γs⊃s Γs Γ∅

Γt⊃t⊃t Γt⊃t Γt

Γs,t⊃s Γs,t

Γs,t⊃t

Differentials: Γs
� / (s− 1)Γ∅

Γt
� / (t− 1)Γ∅

Γs⊃s
� / (1 + s)Γs

Γt⊃t
� / (1 + t)Γt

Γs,t
� /

m(s,t)−1∑
j=0

(−1)j+1p(s, t; j)Γt +

m(s,t)−1∑
g=0

(−1)g+2p(t, s; g)Γs

Γs⊃s⊃s
� / (s− 1)Γs⊃s

Γt⊃t⊃t
� / (t− 1)Γt⊃t

Γs,t⊃s 7→ (1− p(t, s;m(s, t)− 1))Γs⊃s − (1 + s)Γst if m(s, t) even

Γs⊃s − p(s, t;m(s, t)− 1)Γt⊃t − (1 + s)Γst if m(s, t) odd

Γs,t⊃t 7→
(−1 + p(s, t;m(s, t)− 1))Γt⊃t − (1 + t)Γst if m(s, t) even

−Γt⊃t + p(t, s;m(s, t)− 1)Γs⊃s − (1 + t)Γst if m(s, t) odd
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The entries in the spectral sequence which we wish to compute are in fact homologies

of finite Coxeter groups with twisted coefficients ZT given a generating set T , in which the

action of the generators on ZT is given by negation. To calculate the twisted homologies we

tensor the resolution with Z under the group action. We show this in the case of our two

examples.

Example 2.5.6. We give an example of the tensored resolution for finite Coxeter groups

with one generator S = {s}, from C3 to C0. We consider the resolution of Example 2.5.3 and

upon tensoring with Z under the group action, group elements act as negation if they have

odd length and the identity if they have even length. This gives the following resolution:

Z ⊗
Ws

C3
δ2 // Z ⊗

Ws

C2
δ2 // Z ⊗

Ws

C1
δ1 // Z ⊗

Ws

C0

Generators:

1⊗ Γs⊃s⊃s 1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

Differentials: 1⊗ Γs
� / 1⊗ ((s− 1)Γ∅)

= −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 1⊗ ((1 + s)Γs)

= 0

1⊗ Γs⊃s⊃s
� / 1⊗ ((s− 1)Γs⊃s)

= −2(1⊗ Γs⊃s)

Example 2.5.7. We give an example of the tensored resolution for finite Coxeter groups

with two generators T = {s, t}, from C3 to C0 and with m(s, t) finite. We consider the

resolution of Example 2.5.5 and upon tensoring with Z under the group action, this gives the

following resolution:
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Z ⊗
WT

C3
δ3 // Z ⊗

WT

C2
δ2 // Z ⊗

WT

C1
δ1 // Z ⊗

WT

C0

Generators:

1⊗ Γs⊃s⊃s 1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

1⊗ Γt⊃t⊃t 1⊗ Γt⊃t 1⊗ Γt

1⊗ Γs,t⊃s 1⊗ Γst

1⊗ Γs,t⊃t

Differentials:

1⊗ Γs
� / −2(1⊗ Γ∅)

1⊗ Γt
� / −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 0

1⊗ Γt⊃t
� / 0

1⊗ Γs,t
� /

1⊗ (
∑m(s,t)−1

j=0 (−1)j+1p(s, t; j)Γt

+
∑m(s,t)−1

g=0 (−1)g+2p(t, s; g)Γs)

= −m(s, t)(1⊗ Γt) +m(s, t)(1⊗ Γs)

1⊗ Γs⊃s⊃s
� / 1⊗ (s− 1)Γs⊃s

= −2(1⊗ Γs⊃s)

1⊗ Γt⊃t⊃t
� / 1⊗ (t− 1)Γt⊃t

= −2(1⊗ Γt⊃t)

1⊗ Γs,t⊃s
� / 2(1⊗ Γs⊃s) if m(s, t) even

1⊗ Γs⊃s − 1⊗ Γt⊃t if m(s, t) odd

1⊗ Γs,t⊃t
� / −2(1⊗ Γt⊃t) if m(s, t) even

−1⊗ Γt⊃t + 1⊗ Γs⊃s if m(s, t) odd
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2.5.8. Collapse map. In this section we define a chain map, which we call the collapse

map, between De Concini and Salvetti’s resolution for a finite Coxeter group W , and for a

subgroup WT [18].

In the isotropy spectral sequence for the Davis complex, introduced in Section 2.3.14, we

calculate that on the E1 page, the d1 differential has the form of a transfer map between

summands H∗(WT ;ZT ) and H∗(WU ;ZU ) for U ⊂ T , given in Proposition 2.3.15. In the fol-

lowing sections we calculate these twisted homology groups using the De Concini and Salvetti

resolution. Upon applying the transfer map to a generator of the homology H∗(WT ;ZT ), the

image will be in terms of the resolution for the group WT . However we would like the image to

be in terms of the resolution for WU and so we then apply the collapse map in the appropriate

degree to achieve this.

We first recall the following Lemmas, which are re-workings of Lemmas from [27], into

settings relevant to this section. Recall from Definition 1.1.6 that π(a, b; k) is defined to be

the word of length k, given by the alternating product of a and b i.e.

π(a, b; k) =

length k︷ ︸︸ ︷
abab . . .

Lemma 2.5.9 (Deodhar’s Lemma, see Geck and Pfeiffer [27, 2.1.2] ). Let WT be a spherical

subgroup of a finite Coxeter group W . Let v be (T, ∅)-reduced (as defined in Definition 1.2.7)

and let s be in S, the generating set for W . Then either vs is (T, ∅)-reduced or vs = tv for

some t in T .

Lemma 2.5.10 (see Geck and Pfeiffer [27, 1.2.1]). If s, u are in S, m(s, u) is finite, and

w in W satisfies `(ws) < `(w) and `(wu) < `(w) then w = w′(π(s, u;m(s, u))) where w′ is

(∅,W{s,u})-reduced, as defined in Definition 1.2.7.

Definition 2.5.11. Denote the De Concini - Salvetti resolution for W by (C∗, δ∗) and for

WT by (D∗, δ∗). We define the collapse map in degree i to be the WT -equivariant linear map

fi : Ci → Di for 0 ≤ i ≤ 2 as shown below.
δ3 // C2

δ2 //

f2

��

C1
δ1 //

f1

��

C0
δ0 //

f0

��

Z

δ3 // D2
δ2 // D1

δ1 // D0
δ0 // Z.

As a Z[W ] module, C∗ has basis given by e(Γ), so as a Z[WT ] module, C∗ has basis given

by v · e(Γ), for v a (T, ∅)-reduced element of W . We therefore define fi on generators of Ci
multiplied on the left by v and extend the map linearly and WT -equivariantly. By Deodhar’s

lemma (Lemma 2.5.9) for s ∈ S, vs is either (T, ∅)-reduced or vs = tv for some t in T . This

gives us the cases in each definition.

f0(vΓ∅) = Γ∅,
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f1(vΓs) =

{
0 vs is (T, ∅) reduced

Γt vs = tv for t ∈ T

f2(vΓs⊃s)

{
0 vs is (T, ∅) reduced

Γt⊃t vs = tv for t ∈ T

f2(vΓsu) =

{
Γtr vs = tv and vu = rv for t, r ∈ T
0 otherwise.

The remainder of this section is devoted to proving that f∗ is a chain map.

Lemma 2.5.12. The following square commutes:

C0
δ0 //

f0

��

Z

D0
δ0 // Z.

Proof. On wΓ∅ for w in W , the square is given by

wΓ∅
δ0 //

_

f0

��

Z

f0(wΓ∅)
δ0 // Z

since f0 is defined WT -equivariantly then if w = tv for t in WT and v a (T, ∅)-reduced element

then from Definition 2.5.11

f0(wΓ∅) = f0(tvΓ∅) = t · f0(vΓ∅) = tΓ∅.

It follows since δ0 maps all generators to 1 that the square commutes. �

Lemma 2.5.13. The following square commutes

C1
δ1 //

f1

��

C0

f0

��
D1

δ1 // D0.

Proof. Since all maps are WT -equivariant, let w = tv for t in WT and v a (T, ∅)-reduced

element. Then we need only consider the square on generators multiplied by v. We recall the

image of δ1 from Example 2.5.3.
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vΓs
δ1 //

_

f1

��

v(s− 1)Γ∅_

f0

��
f1(vΓs)

δ1 // f0(v(s− 1)Γ∅).

Here there are two cases for the element vs, given by Lemma 2.5.9 which give the following

cases for f0, from Definition 2.5.11:

f0(v(s− 1)Γ∅) =

{
0 vs (T, ∅) reduced

(t− 1)Γ∅ vs = tv.

This is precisely the image of f1(vΓs) from Definition 2.5.11, under the differential δ1. There-

fore the square commutes. �

Lemma 2.5.14. For s and u in S, consider the following three cases, given by Deodhar’s

Lemma 2.5.9:

(1) Neither vs or vu are (T, ∅)-reduced, that is vs = tv and vu = rv for t and r in T .

(2) One of vs and vu is (T, ∅)-reduced, without loss of generality let vs = tv and vu is

(T, ∅)-reduced.

(3) Both vs and vu are (T, ∅)-reduced.

Recall the definition of p(s, t;m) from Definition 2.5.4. Then

f1

(
v
(∑m(s,u)−1

j=0 (−1)j+1p(s, u; j)Γu +
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
))

=


δ2(Γtr) in Case (1)

0 in Case (2)

0 in Case (3).

Proof. We prove the lemma case by case. For Case (1), since f1 acts WT -equivariantly,

f1(v(p(s, u; j)Γu)) = f1(p(t, r; j)vΓu) = p(t, r; j)(f1(vΓu)) = p(t, r; j)Γr

and similarly

f1(vp(u, s; g)Γs) = p(r, t; g)Γt.

Furthermore, m(t, r) = m(s, u) since

π(t, r;m(s, u))v = vπ(s, u;m(s, u)) = vπ(u, s;m(s, u)) = π(r, t;m(s, u))v,

and right multiplication by v−1 gives that π(t, r;m(s, u)) = π(r, t;m(s, u)), so m(t, r) is a

divisor of m(s, u). Furthermore, applying a similar argument in reverse gives m(s, u) is a

divisor of m(t, r), and so m(s, u) = m(t, r).
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Therefore since f1 acts linearly

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
)

=

m(t,r)−1∑
j=0

(−1)j+1p(t, r; j)Γr +

m(t,r)−1∑
g=0

(−1)g+2p(r, t; g)Γt

= δ2(Γtr)

in the setting of Case (1).

For Case (2), we first prove that if vs = tv and vu is (T, ∅)-reduced, then v(π(u, s; k))

is also (T, ∅)-reduced for all 2 ≤ k ≤ m(s, u) − 1. First we note that since vs = tv, from

Lemma 2.5.9 `(vs) > `(v). Suppose v(π(u, s; k)) was not (T, ∅)-reduced and choose minimal

k for which this is the case (so v(π(u, s; k − 1)) is (T, ∅)-reduced). Then for some q in T it

follows v(π(u, s; k)) = qv(π(u, s; k − 1)) and so w = v(π(u, s; k)) satisfies the hypothesis of

Lemma 2.5.10, that is `(wu) < `(w) and `(ws) < `(w). Therefore w = w′π(u, s;m(s, u))) =

v(π(u, s; k)), so by right multiplication by (π(u, s; k))−1 we have v = w′p(s, u;m(s, u) − k),

where we recall p(s, u;m) is the alternating product of s and u of length m and ending in s.

Therefore v satisfies `(vs) < `(v). This contradicts vs = tv, so we must have v(π(u, s; k)) is

also (T, ∅)-reduced for all 2 ≤ k ≤ m(s, u) − 1. Computing f1 on the expressions of the sum

therefore gives:

f1(v(p(s, u; j)Γu)) =


f1(v(π(u, s; j)Γu)) = 0 j is even, j 6= m(s, u)− 1

t · f1(vπ(u, s; j − 1)Γu) = t · 0 = 0 j is odd, j 6= m(s, u)− 1

f1(vπ(u, s;m(s, t)− 1)Γu) = Γt j = m(s, u)− 1 and is even

t · f1(vπ(u, s;m(s, t)− 2)Γu) = t · 0 j = m(s, u)− 1 and is odd

and similarly

f1(vp(u, s; g)Γs) =



f1(vΓs) = Γt g = 0

t · f1(vπ(u, s; g − 1)Γs) = t · 0 = 0 g is even, g /∈ {0,m(s, u)− 1}
f1(vπ(u, s; g)Γs) = 0 g is odd, g 6= m(s, u)− 1

t · f1(vπ(u, s;m(s, t)− 2)Γs) = t · 0 = 0 g = m(s, u)− 1 and is even

f1(vπ(u, s;m(s, t)− 1)Γs) = Γt g = m(s, u)− 1 and is odd
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so it follows

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
)

=

{
Γt + (−1)m(s,t)−1+2Γt = 0 if m(s, u) even

Γt + (−1)m(s,u)−1+1Γt = 0 if m(s, u) odd

in the setting of Case (2).

For Case (3), if both vs and vu are (T, ∅)-reduced, by the same argument as in Case (2),

v(π(u, s; k)) and v(π(s, u; k)) is also (T, ∅)-reduced for all 2 ≤ k ≤ m(s, u). It follows that

computing f1 gives:

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
) = 0

in the setting of Case (3). �

Lemma 2.5.15. The following square commutes

C2
δ2 //

f2

��

C1

f1

��
D2

δ2 // D1.

Proof. Since all maps are WT -equivariant, let w = tv for t in WT and v a (T, ∅)-reduced

element. Then we need only consider the square on generators multiplied by v. We recall the

image of δ2 from Example 2.5.5. We must consider both forms of generators of C2:

vΓs⊃s
δ2 //

_

f2

��

v(1 + s)Γs_

f1

��
f2(vΓs⊃s)

δ2 // f1(v(1 + s)Γs)

vΓs,u
δ2 //

_

f2

��

v
(∑m(s,u)−1

j=0 (−1)j+1p(s, t; j)Γu

+
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
)

_

f1

��

f2(vΓs,u)
δ2 // f1

(
v
(∑m(s,u)−1

j=0 (−1)j+1p(s, u; j)Γt

+
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
))
.

Computing f1(v(1 + s)Γs) we have

f1(v(1 + s)Γs) =

{
0 vs is (T, ∅) reduced

(1 + t)Γt vs = tv.

This is precisely the image of f2(vΓs⊃s) from Definition 2.5.11, under the differential δ2.

Therefore the left hand square commutes.
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The bottom right entry of the right hand square is given in Lemma 2.5.14. This is precisely

the image of f2(vΓs,u) from Definition 2.5.11, under the differential δ2. Therefore the left hand

square commutes. �

Proposition 2.5.16. The maps f0, f1 and f2 in Definition 2.5.11 form part of a chain

map f• : C• → D•.

Proof. This is a consequence of Lemmas 2.5.12, 2.5.13 and 2.5.15, which show that all

squares in the following diagram commute
δ3 // C2

δ2 //

f2

��

C1
δ1 //

f1

��

C0
δ0 //

f0

��

Z

δ3 // D2
δ2 // D1

δ1 // D0
δ0 // Z.

�

2.5.17. Homology at E1
0,3. Recall the isotropy spectral sequence for the Davis complex

of a Coxeter group W has E1 page as follows:

...
...

...
...

...
...

3 H3(W∅;Z∅)
d1

←− ⊕
t∈S

H3(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H3(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H3(WT ;ZT ) · · ·

2 H2(W∅;Z∅)
d1

←− ⊕
t∈S

H2(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H2(WT ;ZT ) · · ·

1 H1(W∅;Z∅)
d1

←− ⊕
t∈S

H1(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H1(WT ;ZT ) · · ·

0 H0(W∅;Z∅)
d1

←− ⊕
t∈S

H0(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H0(WT ;ZT ) · · ·

0 1 2 3 4

and the E∞ page gives us filtration quotients of H3(W ;Z) on the blue diagonal.

Then the E1
0,3 entry is zero because it is the third integral homology of the trivial group,

H3(W∅;Z∅) = 0, on the E1 page. Therefore E2
0,3 and E∞0,3 are zero.
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2.5.18. Homology at E1
1,2. To calculate this, we use the De Concini - Salvetti resolution

[18] to compute the twisted homologies, and the transfer and collapse map to compute the

differentials for the following section of the spectral sequence:

H2(W∅;Z∅) ⊕
t∈S

H2(Wt;Zt)
d1

oo ⊕
T∈S
|T |=2

H2(WT ;ZT ).
d1

oo

We note that H2(W∅;Z∅) = 0 since it is the second homology of the trivial group.

Lemma 2.5.19. The second twisted homology for a one generator Coxeter group Wt is

H2(Wt;Zt) = Z2, generated by 1⊗ Γs⊃s in the De Concini - Salvetti resolution.

Proof. This calculation is in Appendix B. �

Lemma 2.5.20. If T = {s, t} then the second twisted homology the following,

H2(WT ;ZT ) =

{
Z2 ⊕ Z2 if m(s, t) is even

Z2 if m(s, t) is odd,

and in the De Concini - Salvetti resolution this is generated by 1 ⊗ Γs⊃s and 1 ⊗ Γt⊃t when

m(s, t) is even, with these generators being identified when m(s, t) is odd.

Proof. This calculation is in Appendix B. �

Lemma 2.5.21. The transfer map

d1 : ⊕
T∈S
|T |=2

H2(WT ;ZT )→ ⊕
t∈S

H2(Wt;Zt)

restricted to the summand relating to T = {s, t} in the source and restricted to the summand

s and t in the image is given by

d1
T,s : H2(W{s,t};ZT ) → H2(Ws;Zs)

1⊗ Γs⊃s, 1⊗ Γt⊃t 7→ 0 if m(s, t) even

1⊗ Γs⊃s 7→ 1⊗ Γs⊃s if m(s, t) odd

d1
T,t : H2(W{s,t};ZT ) → H2(Wt;Zt)

1⊗ Γs⊃s, 1⊗ Γt⊃t 7→ 0 if m(s, t) even

1⊗ Γs⊃s 7→ 1⊗ Γt⊃t if m(s, t) odd.

Proof. This calculation is in Appendix B. �

Proposition 2.5.22. The E2
1,2 entry on the E2 page of the spectral sequence is given by

H0(Dodd;Z2).
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Proof. We have the following groups and differentials on the E1 page:

H2(W∅;Z∅) ⊕
t∈S

H2(Wt;Zt)
d1

oo ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

oo

0 ⊕
t∈S

Z2
d1

oo ⊕
T∈S
|T |=2

Z2 ⊕ Z2 if m(s, t) even

Z2 if m(s, t) odd.
d1

oo

The left hand map is the zero map and the right hand map is defined via Lemma 2.5.21.

Applying the splitting technique as in the proof of the H2(W ;Z) calculation (i.e. as in Propo-

sition 2.4.10), we can equate the kernel of the left hand map over the image of the right hand

map to the 0th homology with Z2 coefficients of the diagram with only odd edges, Dodd. �

2.5.23. Homology at E1
2,1. We use The De-Concini Salvetti resolution to calculate

E1
3,1 = ⊕

T∈S
|T |=3

H1(WT ;ZT ),

the first twisted homology of spherical subgroups with 3 generators. After calculating these,

we use the transfer and collapse map to compute the d1 differentials and therefore we can

compute E2
2,1. The E1 page as E1

2,1 has the following form:

⊕
t∈S

H1(Wt;Zt) ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H1(WT ;ZT ).
d1
oo

Using De Concini - Salvetti we can calculate the first homology of the spherical subgroups.

The formulation of the twisted resolutions and homology calculations are of a similar nature

to those for the 1 generator and 2 generator cases that we have described in some detail

throughout the preceding sections.

Proposition 2.5.24. The first homology H1(WT ;ZT ) is as follows for spherical subgroups

WT with T = {s, t, u}. Generators are given by the De Concini - Salvetti resolution for WT :

we let

α = (1⊗ Γs)− (1⊗ Γt) and β = (1⊗ Γs)− (1⊗ Γu).
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WT DWT
H1(WT ;ZT ) Generator

W (A3)
s t u

Z3 α

W (B3)
s

4
t u

Z2 α = β

W (H3)
s

5
t u

0

W (I2(p))×W (A1)
s

p

t u
Z2 ⊕ Z2 if p is even

Z2 if p is odd

α, β if p is even

β if p is odd

Proof. These calculations are in Appendix B. �

Proposition 2.5.25. When T = {s, t},

H1(WT ;ZT ) = H1(I2(m(s, t));ZT ) = Zm(s,t)

with generator in the De Concini - Salvetti resolution for WT given by γ = 1⊗ Γs − 1⊗ Γt.

Proof. This calculation is in Appendix B. �

Proposition 2.5.26. The first twisted homology of the one generator Coxeter group

W (A1) with generator s is H1(Ws;Zs) = 0.

Proof. From Example 2.5.6 the twisted resolution has the form

Z ⊗
Ws

C2
δ2 // Z ⊗

Ws

C1
δ1 // Z ⊗

Ws

C0

Generators: 1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

Differentials: 1⊗ Γs
� / −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 0

and so the kernel of δ1 is 0, which completes the proof. �

Definition 2.5.27. If the homology of a Coxeter group Hi(WT ;ZT ) for a group WT

represented by a diagram DWT
only has one generator, then we represent that generator in

the group

⊕
T∈S
|T |=p

Hi(WT ;ZT )

by drawing the diagram DWT
. Suppose WU is a subgroup of WT . We represent a non-zero

differential in the E1 page from the generator of Hi(WT ;ZT ) to the generator of Hi(WU ;ZU )

by drawing a map from the diagram DWT
to the diagram DWU

. If the differential is zero, we

do not draw the subgroup diagram.
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Example 2.5.28. We will see in the next proposition that the generator forH1(W (A3);ZT )

is mapped by the transfer map d1 to the generator for H1(W (A2);ZT ), when W (A2) is a sub-

group of W (A3). We represent this as:

⊕
T∈S
|T |=2

H1(WT ;ZT ) ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1
oo

s t
	

t u s t u

�oo

which shows the diagram A3 to represent the generator for H1(W (A3);ZT ) when W (A3) has

generating set {s, t, u}. The two subdiagrams correspond to the generators for H1(W (A2);ZT )

for the two possible W (A2) subgroups generated by {s, t} and {t, u}. Then this map shows

that the generator for H1 of W{s,t,u} maps via the d1 differential to the generator for H1 of

W{s,t} minus the generator for H1 of W{t,u}.

Proposition 2.5.29. The differentials on the E1 page at E1
2,1 are given as in the diagram

below, where the diagram notation from Definition 2.5.27 is used. Note here that diagrams

representing homology of W (H3) and W (I2(p))×W (A1) for p even are included, even though

their homologies have none and two generators respectively. However the d1 differential map-

ping from the homology of either group is zero, and so this does not affect the notation.
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⊕
t∈S

H1(Wt;Zt) ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1

oo

s
p even

t

s
p odd

t

s t
	

t u s t u

�oo

s
4
t u

s
5
t u

s
p even

t u

s u
⊕

t u s
p odd

t u

�oo

Proof. Recall the diagram notation from Definition 2.5.27. This proof involves calculat-

ing the differential d1 (which is the transfer map on each summand by Proposition 2.3.15) on

the generators of the homology groups, followed by the collapse map from Definition 2.5.11

which gives the image of this map in terms of the De Concini - Salvetti resolution for the

smaller group. These calculations are in Appendix B. �

Proposition 2.5.30. Recall from Definition 2.1.12 the definition of the diagrams D•• and

DA2. Then the E2
2,1 entry is given by

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕
(

⊕
m(s,t)>3, 6=∞

Zm(s,t)

)
.

Proof. Consider the d1 differentials at E2
2,1, as given in Proposition 2.5.29. Applying the

splitting technique as in the proof of the H2(W ;Z) calculation (i.e. as in Proposition 2.4.10),

we can equate the the kernel of the right hand map over the image of the left hand map to

the three summands in the proposition. �
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2.5.31. Homology at E1
3,0. To calculate this one needs to consider the index of spherical

subgroups inside spherical subgroups, as in Section 2.4.4 and in particular Lemma 2.4.6, which

gives us that on the bottom row letting the generator of H0(WT ;ZT ) = Z2 be denoted by 1T
gives the following transfer map, when T ′ is a subset of T .

d1
T,T ′ : H0(WT ;ZT ) → H0(WT ′ ;ZT ′)

Z2 → Z2

1T 7→
{

0 if |WT |/|WT ′ | is even

1T ′ if |WT |/|WT ′ | is odd.

Considering the maps at E1
3,0 in the spectral sequence, we have the following

⊕
T∈S
|T |=2

H0(WT ;ZT ) ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1
oo ⊕

T∈S
|T |=4

H0(WT ;ZT )
d1
oo

⊕
T∈S
|T |=2

Z2 ⊕
T∈S
|T |=3

Z2
d1

oo ⊕
T∈S
|T |=4

Z2
d1

oo

Lemma 2.5.32. Recall the notation introduced in Definition 2.5.27, where if the homology

of a Coxeter group has one generator, we represent that generator by the corresponding Coxeter

diagram. With this notation, the d1 differentials at E1
3,0 are given by the following maps

⊕
T∈S
|T |=2

H0(WT ;ZT ) ⊕
T∈S
|T |=3

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=4

H0(WT ;ZT )
d1

oo

⊕
T∈S
|T |=2

Z2 ⊕
T∈S
|T |=3

Z2
d1

oo ⊕
T∈S
|T |=4

Z2
d1

oo

t u
+

s u s
p odd

t u

�oo

s t u
+

t u v s t u v

�oo

q even

t u v
+

s
q even
u v s

p odd q even

t u v

�oo

q odd

t u v
+

s
q odd
u v

+

s
p odd

t v
+

s
p odd

t u
s
p odd q odd

t u v

�oo
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Proof. From Lemma 2.4.9 we know the image of the transfer map

d1 : ⊕
T∈S
|T |=3

Z2 → ⊕
T∈S
|T |=2

Z2.

To compute the transfer map

d1 : ⊕
T∈S
|T |=4

Z2 → ⊕
T∈S
|T |=3

Z2.

we need to consider the index of subgroups with three generators inside finite groups with

four generators, by Lemma 2.4.6. This information is displayed in the following table, where

p and q are natural numbers greater than or equal to 2:

DW |WT | |W{s,t,u}| |W{s,t,v}| |W{s,u,v}| |W{t,u,v}|

s t u v
120 24 12 12 24

s
4
t u v

384 48 16 12 24

s

t u v
192 24 24 8 24

s
5
t u v

14400 120 20 12 24

s
4

t u v
1152 48 12 12 48

s t u v
48 24 12 8 12

s
4
t u v

96 48 16 8 12

s
5
t u v

240 120 20 8 12

s
p q

t u v
2p× 2q 4p 4p 4q 4q

Computing the index of each subgroup gives non zero maps as required.

�

Proposition 2.5.33. Recall from Definition 2.1.12 the definition of the diagrams D�
•• and

D even and DA3. Then the E2
3,0 entry on the E2 page of the spectral sequence is given by

E2
3,0 = H1(D�

••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)

where the sum over W (H3) ⊆W and W (B3) ⊆W is viewed as a sum over all subsets I ⊂ S
such that WI is of type B3 or H3.
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...
...

3 0 · · ·

2 0 A ? · · ·

1 0 0 B ? · · ·

0 Z ? ? C ? · · ·

0 1 2 3 4

Figure 2. The E2 page of the isotropy spectral sequence for the Davis com-

plex of a Coxeter group W.

Proof. Splitting the d1 differentials of Lemma 2.5.32 as in the proof of the H2(W ;Z)

calculation (i.e. as in Proposition 2.4.10), we can equate the kernel of the left hand differentials

over the image of the right hand differentials to the components on the right hand side of the

above expression. This gives the formula for the E2 term as required. �

2.5.34. Further differentials are zero. Recall the isotropy spectral sequence for the

Davis complex associated to a group W , given in Figure 1. Then from the calculations of

E2
i,j for the diagonal i+ j = 2 in Section 2.4 and the diagonal i+ j = 3 in the previous four

subsections, the spectral sequence has E2 page as shown in Figure 2.
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Where A is H0(Dodd;Z2),

B is H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

and C is H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2).

The E∞ page of this spectral sequence gives us filtration quotients for H3(W ;Z) (up to

extension) on the blue diagonal. The argument in this section shows that all possible further

differentials to and from the blue diagonal are zero. Since the spectral sequence is first

quadrant, all possible further differentials out from the groups A and B are zero, and one can

see from the diagram that the possible d2 and d3 differentials from C also have target groups

0. Therefore there are only 3 possible further differentials that may affect the blue diagonal:

(1) d2 : E2
3,1 → A

(2) d2 : E2
4,0 → B

(3) d3 : E3
4,0 → E3

1,2.

To compute these differentials we first prove two lemmas which will reduce the cases for which

we compute E2
4,0.

Denote the isotropy spectral sequence E(A×B) for Coxeter group WA ×WB, where WA

and WB are non trivial finite groups, and the size of their generating sets add to 4. Then the

E1
4,0 term in the spectral sequence is

E1
4,0 = H0(WA ×WB;ZAtB).

Lemma 2.5.35. With notation as above, the possible d2 and d3 differentials originating at

Er4,0, for r = 2 or r = 3, in the spectral sequence E(A×B) are zero.

Proof. By the Künneth theorem for group homology (see e.g. [12]) we have the short

exact sequence:

0→
⊕
i+j=k

Hi(WA;ZA)⊗Z Hj(WB;ZB)
×→ Hk(WA ×WB;ZAtB)

→
⊕

i+j=k−1

TorZ1 (Hi(WA;ZA), Hj(WB;ZB))→

since ZA ⊗ ZB ∼= ZAtB, and when k = 0 we have⊕
i+j=k−1

TorZ1 (Hi(WA;ZA), Hj(WB;ZB))

=
⊕

i+j=−1

TorZ1 (Hi(WA;ZA), Hj(WB;ZB))

= 0



2.5. CALCULATION FOR H3(W ;Z) 76

hence the short exact sequence gives

H0(WA;ZA)⊗Z H0(WB;ZB)
∼=→ H0(WA ×WB;ZAtB).

By Theorem 2.3.19 there is a pairing

Φ∗ : E(A)⊗ E(B)→ E(A×B)

which is given on individual summands by the Künneth map. Therefore for E1
4,0 (since it has

only one summand) Φ∗ is given by the Künneth map above, which is an isomorphism. Under

the pairing Φ∗ all cycles in E1
4,0 in E(A×B) therefore correspond to a pair of cycles: one in

E1
p,0 in E(A) and one in E1

4−p,0 in E(B). Since moving from page Er to page Er+1 calculates

homology with respect to dr, cycles in E2
4,0 in E(A×B) will be quotients of cycles in E1

4,0 in

E(A×B), and cycles in E3
4,0 in E(A×B) will be quotients of these.

Under Φ∗ the differentials satisfy a Leibniz rule: in the image of the pairing the differentials

dr for the spectral sequence E(A × B) can be written in terms of the differentials dr for the

spectral sequence E(A) and the spectral sequence E(B). Since all cycles in Er4,0 for r = 1, 2, 3

in E(A×B) are defined via Φ∗ on the E1 page, it follows that the differentials dr originating at

these positions are defined purely in terms of the differentials dr in E(A) and E(B) originating

at this position, via a Leibniz rule.

Since the number of generators in WA or in WB is less than the number of generators in

WA×WB, the differentials in E(A) and E(B) that occur in this Leibniz rule will originate at

Erp,0 where p < 4. But all possible targets of a d2 or d3 differential from such an Erp,0 are zero,

since they are zero on the E2 page of both E(A) and E(B) (consider the spectral sequence

in Figure 2). Thus the further differentials mapping from Er4,0 in E(A×B) are zero. �

Lemma 2.5.36. Consider a differential d2 or d3 originating from a summand in Er4,0 for

r = 2 or r = 3, in the isotropy spectral sequence for a Coxeter group W . If the corresponding

cycle at the E1
4,0 term is a summand H0(WA × WB;ZAtB), for WA and WB non-trivial

subgroups of W , then the d2 or d3 differential is zero.

Proof. By Lemma 2.3.16, the inclusion of groups WA ×WB ↪→ W gives an inclusion of

spectral sequences on the E1 page

E1(A×B) ↪→ E1(W ).

Therefore differentials mapping from cycles corresponding to the H0(WA ×WB;ZAtB) sum-

mand at position E1
4,0 in E(W ) will be given by differentials in E(A×B).

From Lemma 2.5.35 the d2 and d3 differentials originating at the Er4,0 position are zero in

E(A×B). This completes the proof. �

Corollary 2.5.37. Consider d2 and d3 differentials originating at summands in E2
4,0 and

E3
4,0. If the corresponding cycles at the E1

4,0 term come from H0(WT ;ZT ) such that WT is one
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of the following groups, then the d2 and d3 differentials are zero. Below p and q are integers

greater than or equal to 2.

s t u v

s
4
t u v

s
5
t u v

s
p q

t u v

We therefore only need to consider the E2
4,0 components which come from the

E1
4,0 = ⊕

T∈S
|T |=4

H0(WT ;ZT )

cycles relating to the groups which do not arise as products, namely forWT of typeA4, B4, D4, F4

and H4. Recall that all Coxeter groups satisfy H0(WT ;ZT ) = Z2 and recall the notation of

Definition 2.5.27 which allows us to represent this homology class by the corresponding Cox-

eter diagram.

Lemma 2.5.38. With notation as above, the differentials on the E1 page at the E1
4,0 position

for the summands H0(WT ;ZT ) corresponding to Coxeter groups of type A4, B4, D4, F4 and H4

have the following form:



2.5. CALCULATION FOR H3(W ;Z) 78

⊕
T∈S
|T |=3

H0(WT ;ZT ) ⊕
T∈S
|T |=4

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=5

H0(WT ;ZT )
d1
oo

⊕
T∈S
|T |=3

Z2 ⊕
T∈S
|T |=4

Z2
d1

oo ⊕
T∈S
|T |=5

Z2
d1

oo

s t u
+

t u v s t u v

�oo

s
4
t u v

s

t u v

s
5
t u v

s
4

t u v

Proof. From Lemma 2.5.32 we have the maps from the central groups to the left. The

finite Coxeter groups with 5 generators for which the A4, B4, D4, F4 and H4 diagrams are

subdiagrams are the groups of type A5, B5, D5 and the product groups of type A4×A1, B4×
A1, D4 × A1, F4 × A1 and H4 × A1. Recall from Lemma 2.4.6 that the transfer map on the

bottom row is determined by the index of the subgroup. In the case of the product groups,

the index of the corresponding 4-generator subgroup is 2 and hence the transfer map is zero.

We are therefore left with the following computations:

• |W (A4)| = 120, |W (A5)| = 720 so |W (A5) : W (A4)| = 6

• |W (B4)| = 384, |W (B5)| = 3840 so |W (B5) : W (B4)| = 10

• |W (D4)| = 192, |W (D5)| = 1920 so |W (D5) : W (D4)| = 10

which we compute using Python and [26], though formulas for each group size can be found

in [33]. Since in each case the index of the subgroup is even, the transfer map is zero. �

Proposition 2.5.39. If the d1 differential originating at a summand Hq(WT ;ZT ) on the

E1 page of the isotropy spectral sequence is identically zero on the chain level, then the higher

differentials which originate at cycles corresponding to Hq(WT ;ZT ) on the Er page are also

zero.
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Proof. The d1 differential of the isotropy spectral sequence is given by the transfer map

on the chain level by Proposition 2.3.15. In general higher differentials of the spectral sequence

for a double complex are induced by combinations of the differentials on the chain level, and

lifting on the chain level. For example given a double complex Cp,q the d2 differential is

induced on the chain level as follows:

Cp−2,q+1 Cp−1,q+1
oo

��
Cp−1,q

lift

EE

Cp,qoo

d2

uu

Therefore if the d1 differential is zero on the chain level for the cycle representing a term Erp,q,

then the higher differentials will also be zero. �

Corollary 2.5.40. The d2 and d3 differentials originating at the Er0,4 position for r = 2

or r = 3 corresponding to cycles on the E1
4,0 summands for groups of type B4, D4, F4 and H4

are zero.

Proof. This is a consequence of Lemma 2.5.38, and Proposition 2.5.39, if we prove that

the transfer maps given in Lemma 2.4.6 on the chain level originating at H0(WT ;ZT ) for

these groups are identically zero (and not just zero modulo 2). This is satisfied if, alongside

there being an even number of cosets, there are identical numbers of cosets with odd and even

length. Then the transfer map on the chain level for C0:

tr : ZT ′ → ZT
m 7→

∑
g∈WT ′\WT

g ·m

will map identically to zero, since the coset acts on m as the identity if it has even length and

negation if it has odd length. Using Python [26] we write a short program which returns the

number of coset representatives of even and odd length, given a group and a subgroup. The

code can be found in Appendix A. We then compute that in the cases of B4, D4, F4 and H4,

every three generator subgroup has an equal number of even length and odd length cosets.

Therefore they transfer identically to zero, so we can apply Proposition 2.5.39. �

We are therefore left with a potential d2 or d3 differential originating at the Er0,4 position for

r = 2 or r = 3, corresponding to cycles on the E1
4,0 summand H0(W (A4);ZT ). This summand

is non-zero when W (A4) arises as a spherical subgroup of W . We compute the spectral

sequence for W (A4) and note by Lemma 2.3.16 that any further differentials occurring in the

spectral sequence for W corresponding to this summand, will occur in the spectral sequence

for W (A4), via the inclusion of W (A4) into W .
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Lemma 2.5.41. The potential d2 and d3 differentials originating at the Er0,4 position for

r = 2 or r = 3 and corresponding to cycles on the E1
4,0 summand H0(W (A4);ZT ) are zero.

Proof. If the further differentials were non zero then they would also be non zero in the

spectral sequence for W (A4) by Lemma 2.3.16. The E2 page for the Coxeter group W (A4) is

given by

...
...

3 0 · · ·

2 0 Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4

and the computation of this is given in Appendix B. Therefore the blue diagonal in the

spectral sequence contains the groups Z2,Z2⊕Z3 and Z2. The third integral homology of the

symmetric group on 5 letters, which corresponds to W (A4), is

H3(W (A4);Z) = Z12 ⊕ Z2
∼= Z3 ⊕ Z4 ⊕ Z2

which is precisely given by letting the groups on the blue diagonal be the E∞ terms, or

filtration quotients for H3(W (A4);Z) (here there is a non-trivial extension of Z2 by Z2 to get

Z4 which we will discuss in the following section). Therefore the E2 page is equal to the E∞

page on the blue diagonal, and so no higher differentials in or out of this diagonal are are

non-zero. �

Proposition 2.5.42. The possible d2 and d3 originating at the E∗4,0 group in the spectral

sequence are zero.

Proof. This is direct result of putting together Corollaries 2.5.37 and 2.5.40 and Lemma

2.5.41. �

To compute the potential d2 differential from E2
3,1 to E2

1,2, we first compute the E2
3,1 term

in the spectral sequence.

Lemma 2.5.43. We have the following first homology groups H1(WT ;ZT ) for finite Coxeter

groups with 4 generators. Generators are given by the De Concini - Salvetti resolution for
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WT : we let

α = (1⊗ Γs)− (1⊗ Γt) ,

β = (1⊗ Γs)− (1⊗ Γu),

γ = (1⊗ Γs)− (1⊗ Γv).

WT DWT
H1(WT ;ZT ) Generators

W (A4)
s t u v

0

W (B4)
s

4
t u v

Z2 α = β = γ

W (H4)
s

5
t u v

0

W (F4)
s

4
t u v

Z2 β = γ

W (D4)

s

t

u v
Z3 β

W (I2(p))×W (I2(q))
s

p

t u v
q

Z2 ⊕ Z2 ⊕ Z2 p, q even

Z2 ⊕ Z2 p odd, q even

Z2 ⊕ Z2 p even, q odd

Z2 p, q odd

α, β, γ

β, γ

α, β = γ

β = γ

W (A3)×W (A1)
s t u v

Z2 γ

W (B3)×W (A1)
s

4
t u v

Z2 ⊕ Z2 α = β, γ

W (H3)×W (A1)
s

5
t u v

Z2 γ

Proof. These calculations are in Appendix B. �

Lemma 2.5.44. Recall the notation introduced in Definition 2.5.27, where if the homology

of a Coxeter group has one generator, we represent that generator by the corresponding Coxeter

diagram. Using this notation, the d1 differentials on the E1 page at the position E1
1,3 are given

by the following maps. Here we note that some of the groups satisfy that the homology has

two or more generators. In all but one case these generators all map to zero, which is shown

by no map originating at the diagram. In the isolated case I2(p)× I2(q) where p is odd and q
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is even, the two generators are mapped to the two generators for the subgroups shown by the

identity map.
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⊕
T∈S
|T |=2

H1(WT ;ZT ) ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1

oo ⊕
T∈S
|T |=4

H1(WT ;ZT )
d1

oo

t u
⊕

s u s
p odd

t u

�oo

s t
⊕

t u s t u

�oo

s
4
t u

s
5
t u

s
p even

t u

t u v
q odd ⊕

s u v
q odd ⊕

s
p odd

t v
⊕

s
p odd

t u
s
p odd

t u v
q odd�oo

s u v
q even ⊕

t u v
q even

s
p odd

t u v
q even�oo

2

s

t

u
⊕ 2

t

u v
⊕ 2

s
u v

s

t

u v

�oo

s u v s t u v

�oo

s t u v

s
4
t u v

s
5
t u v

s
4

t u v

s
p even

t u v
q even

s
4
t u v

s
5
t u v
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Proof. The left hand maps are given by Proposition 2.5.29. We compute the transfer

and collapse maps on the right using Python, as in the sample Example A.1 in Appendix A.

These calculations are in Appendix B. �

Denote the isotropy spectral sequence E(T × V ) for Coxeter group WT ×WV , where WT

and WV are non trivial finite groups, and the size of their generating sets add to 3.

Lemma 2.5.45. With notation as above, the possible d2 differential originating at E2
3,1, in

the spectral sequence E(T × V ) is zero.

Proof. Note that by the Künneth theorem for groups:

H1(WT ×WV ;ZT∪V ) ∼= (H1(WT ;ZT )⊗H0(WV ;ZV ))⊕ (H0(WT ;ZT )⊗H1(WV ;ZV ))

⊕TorZ1 (H0(WT ;ZT ), H0(WV ;ZV ))

By Theorem 2.3.19 if the d2 originates from either the (H1(WT ;ZT )⊗H0(WV ;ZV )) component

or the (H0(WT ;ZT )⊗H1(WV ;ZV )) component of the right hand side of the isomorphism, it

is in the image of the pairing

Φ∗ : E(T )⊗ E(V )→ E(T × V )

which is given by the Künneth map on components.

In the image of Φ∗, the d2 differential on the left hand side satisfies a Leibniz rule. That

is the d2 differential on E(T × V ) is determined by the d2 differentials on E(T ) and the d2

differentials on E(V ). By similar reasoning as in the proof of Lemma 2.5.35 these differentials

are zero, and therefore via the Leibniz rule the d2 originating at a cycle in the image of Φ∗ is

zero.

It remains to show that a d2 differential originating at a cycle corresponding to the Tor

summand of the right hand side of the Künneth isomorphism at E1
3,1 in E(T × V ) is zero.

That is, the group TorZ1 (H0(WT ;ZT ), H0(WV ;ZV )) = Z2 and there may exist a d2 differential

corresponding to a map originating at this Z2. Consider the following short exact sequence:

H1(WT ×WV ;ZT∪V )
×2→ H1(WT ×WV ;ZT∪V )

ρ2→ H1(WT ×WV ;Z2)

where ρ2 is mod 2 reduction. The class corresponding to Tor (let’s call it α) in the middle

summand will satisfy ρ2(α) 6= 0, since it represents 2-torsion, but by the Künneth formula,

H1(WT ×WV ;Z2) ∼= (H1(WT ;Z2)⊗H0(WV ;Z2))⊕ (H0(WT ;Z2)⊗H1(WV ;Z2)).

Therefore, if we consider the isotropy spectral sequence for WT ×WV , but with Z2 coefficients,

i.e. the sequence for H∗(WT ×WV ;Z2), by the pairing of spectral sequences in Theorem 2.3.19

and the same reasoning as the proof of Lemma 2.5.35, the class corresponding to ρ2(α) will be

mapped to zero under the d2 differential: d2(ρ2(α)) = 0. However the target of the differential

is all 2-torsion (it is given by H0(Dodd;Z2)) and so this survives in the reduction ρ2. Since the
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d2 differential commutes with mod 2 reduction, computing d2 on α and then reducing should

give the zero map, i.e.

ρ2(d2(α)) = d2(ρ2(α)) = 0.

Since the target is unchanged by reduction, ρ2(d2(α)) = d2(α) and so d2(α) must be zero. �

Lemma 2.5.46. Suppose a d2 differential in the isotropy spectral sequence for W originates

at a cycle in E2
3,1 represented by a homology class in E1

3,1 of a subgroup WT ×WV of W such

that neither WT or WV is the trivial group. Then this d2 differential is the zero map.

Proof. By Lemma 2.3.16, the inclusion of groups WT ×WV ↪→ W gives an inclusion of

spectral sequences on the E1 page

E1(T × V ) ↪→ E1(W )

such that in the image of the inclusion the differentials in E(T × V ) give the differentials in

E(W ). Therefore all cycles corresponding to the H1(WT ×WV ;ZTtV ) summand at position

E1
3,1 in E(W ) will be given by differentials in E(A×B).

From Lemma 2.5.45 the possible d2 differential originating at E2
3,1, in the spectral sequence

E(T × V ) is zero. This completes the proof. �

Proposition 2.5.47. The possible d2 differential originating at the E2
3,1 group in the

spectral sequence is zero.

Proof. The E2
3,1 entry is calculated by computing the homology of the sequence given in

Lemma 2.5.44. Its origin is therefore cycles in summands of the form H1(WT ;ZT ) for |T | = 3.

Note that the target of this d2 differential is given by E2
1,2 = H0(Dodd;Z2), which is all two

torsion.

If the origin of the d2 map is a cycle in the summand H1(WT ;ZT ) = Z3 for WT = W (A3),

it must map via d2 to zero, since the target is all 2-torsion and the source is 3-torsion.

If the origin of the d2 map is a cycle in the summand H1(WT ;ZT ) for WT = W (B3),

WT = W (H3) or WT = W (I2(p)) ×W (A1) it will map to zero, as the representing cycles

transfer identically to zero on the chain level by the proof of Lemma 2.5.44, so we can apply

Proposition 2.5.39.

Lemma 2.5.46 covers the final cases where the d2 originates at a cycle in the summand

H1(WT ;ZT ) for WT = W (I2(p))×W (A1) for 2 ≤ p. �

2.5.48. Extension problems. Recall the isotropy spectral sequence for the Davis com-

plex associated to a group W , given in Figure 1. Then from the calculations of E2
i,j for the

diagonal i + j = 2 in Section 2.4, the diagonal i + j = 3 in this section, and since all fur-

ther differentials with target or source group on the blue diagonal are zero from the previous

subsection, the spectral sequence has the following E∞ page.
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...
...

3 0 · · ·

2 0 A ? · · ·

1 0 0 B ? · · ·

0 Z ? ? C ? · · ·

0 1 2 3 4

Where A is H0(Dodd;Z2),

B is H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

and C is H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2).

And the spectral sequence on this diagonal converges to H3(W ;Z), so we are left to consider

possible extensions on this diagonal. That is there is a filtration of H3(W ;Z)

F0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(W ;Z)

where E∞0,3 = F0, E∞1,2 = F1/F0, E∞2,1 = F2/F1 and E∞3,0 = F3/F2. In our case we have F0 = 0

and so E∞1,2 = H0(Dodd;Z2) = F1.

Proposition 2.5.49. We have that F1 = A = H0(Dodd;Z2) splits off by an analogue of

the sign homomorphism for symmetric groups.

Proof. Consider a homomorphism ψ from a Coxeter group W with generating set S to

the cyclic subgroup of order two generated by t in S, which is isomorphic to W (A1). If two

generators of W , s1 and s2, satisfy m(s1, s2) is odd then we require ψ(s1) = ψ(s2), whereas if

m(s1, s2) is even there is no requirement on ψ. A summand of

A = F1 = H0(Dodd;Z2) =
⊕

π0(Dodd)

Z2

is represented by a vertex of D(W ). For the vertex t generating the subgroup W (A1), denote

the corresponding summand of A by Z2(t). We define the homomorphism ψ from W to W (A1)

to be zero on all but one of the connected components of Dodd, namely the t component.
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ψ : W → W (A1)

s 7→

{
t if s and t are in the same component of π0(Dodd)
e otherwise.

Then the map ψ induces a map ψ∗ which fits into the following diagram

Z2(t) �
� //

id
,,

A �
� // H3(W ;Z)

ψ∗ // H3(W (A1);Z)

Z2

where H3(W (A1);Z) = Z2 is computed by noting that the E∞ page of the isotropy spectral

sequence for W (A1) has only one group on the blue diagonal: the H0(Dodd;Z2) component

corresponding to t (Z2(t)). The inclusion map A ↪→ H3(W ;Z) comes from the fact that A is

at the top left of the diagonal of filtration quotients for W , and so is a subgroup of H3(W ;Z).

The isomorphism gives us that H3(W ;Z) splits as

H3(W ;Z) = Z2(t)⊕ ker(ψ∗)

and so there are no extensions involving the Z2(t) summand of A. Repeating this argument

over all summands gives that there are no extensions involving A and so A = F1 splits off in

H3(W ;Z), as required.

�

We therefore have the filtration

0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(W ;Z) = F1 ⊕ F ′3
and so F2 = F1 ⊕ F ′2 and F3 = F1 ⊕ F ′3. It follows that E∞2,1 = B = F2/F1 = F ′2 and

E∞0,3 = C = F3/F2 = F ′3/F
′
2, so F ′3 fits into the following exact sequence

0 // F ′2
// F ′3

// F ′3/F
′
2

// 0

0 // B // F ′3
// C // 0

i.e. F ′3 is an extension of C by B.

Lemma 2.5.50. There exist no non-trivial extensions between H0(D even ;Z2) in C and

B.

Proof. A summand of H0(D even ;Z2) is represented by a vertex in D even which is

given by an I2(2p) t A1 subdiagram present in DW . We compute the spectral sequence for

the Coxeter group V = W (I2(2p))×W (A1) corresponding to this diagram, and note that by

Lemma 2.3.16 the inclusion of the subgroup V into the group W induces a map of spectral
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sequences. Therefore if there is a trivial extension in the spectral sequence for V corresponding

to the I2(2p) t A1 summand of H0(D even ;Z2), this extension will be trivial in the spectral

sequence for W . This is because the splitting of the extension sequence in E(V ) will give a

splitting of the extension sequence in E(W ), under the map of spectral sequences.

We consider first the case when p > 1 and then the case p = 1. The E∞ page for the

Coxeter group V = W (I2(2p))×W (A1), for p > 1 is given by

...
...

3 0 · · ·

2 0 Z2 ⊕ Z2 ⊕ Z2 ? · · ·

1 0 0 Z2 ⊕ Z2 ⊕ Z2p ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

which is computed in Appendix B. We therefore have that H3(V ;Z) = F ′3 ⊕ F1 = F ′3 ⊕ (Z2 ⊕
Z2 ⊕ Z2) where F ′3 is an extension of Z2 by Z2 ⊕ Z2 ⊕ Z2p.

The third integral homology of V = W (I2(2p))×W (A1) can be computed via the Künneth

formula for groups, to be

H3(W (I2(2p))×W (A1);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2p ⊕ Z2 ⊕ Z2

We compute this in Appendix B.

Therefore we see that F ′3 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2p and it follows that there is no non-trivial

extension between the H0(D even ;Z2) component of C and B. For the case p = 1, i.e. V =

W (I2(p))×W (A1) = W (A1)×W (A1)×W (A1), we have the following E∞ page:
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...
...

3 0 · · ·

2 0 Z2 ⊕ Z2 ⊕ Z2 ? · · ·

1 0 0 Z2 ⊕ Z2 ⊕ Z2 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

which is computed in Appendix B.

We therefore have that H3(V ;Z) = F ′3 ⊕ F1 = F ′3 ⊕ (Z2 ⊕ Z2 ⊕ Z2) where F ′3 is an extension

of Z2 by Z2 ⊕ Z2 ⊕ Z2.

The third integral homology of V = W (A1)×W (A1)×W (A1) is given by that of W (I2(2p))×
W (A1) when p = 1 and from the previous calculation is therefore:

H3(W (A1)×W (A1)×W (A1);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.

Therefore we see that F ′3 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, and it follows that there is no non-trivial

extension between the H0(D even ;Z2) component of C and B. �

Lemma 2.5.51. There exists a non-trivial extension between the H0(DA3 ;Z2) component

in C and the H0(D••;Z2) component in B.

Proof. A summand of H0(DA3 ;Z2) is represented by a vertex of DA3 , which is given

by an A3 subdiagram present in DW . We compute the spectral sequence for the subgroup

V = W (A3) corresponding to this diagram. The E∞ page for the Coxeter group V = W (A3)

is given by
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...
...

3 0 · · ·

2 0 Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

which is computed in Appendix B. We therefore have H3(V ;Z) = F ′3 ⊕ F1 = F ′3 ⊕ Z2 where

F ′3 is an extension of Z2 by Z2⊕Z3. Recall that V = W (A3) is the symmetric group S4. The

third integral homology of V = W (A3) is H3(S4;Z) = Z12 ⊕ Z2 and the unique extension

which will obtain this result is the following:

0→ Z2 ⊕ Z3 → Z4 ⊕ Z3 → Z2 → 0

giving H3(V ;Z) = Z4 ⊕ Z3 ⊕ Z2 = Z12 ⊕ Z2. By Lemma 2.3.16 the inclusion of subgroup

V into group W gives a map of spectral sequences. Under this map the extension sequence

above is mapped as follows.

0 // Z2 ⊕ Z3� _

��

// Z4 ⊕ Z3

��

// Z2� _

��

// 0

0 // B // F ′3
// C // 0.

Therefore the extension in the V spectral sequence corresponding to the A3 summand of

H0(DA3 ;Z2) is present in the spectral sequence for W . It follows that there exists a non

trivial extension from each summand of H0(DA3 ;Z2) to H0(D••;Z2). �

Definition 2.5.52. For a Coxeter group W , let I = π0(D••), J = π0(DA3) and let the

connected component of a vertex {s, u} in π0(D••) be denoted [{s, u}] and the connected

component of a vertex {s, t, u} in π0(DA3) be denoted [{s, t, u}]. We define the extension

matrix XW to be the I by J matrix with entries

X(i, j) =

{
1 if i = [{s, u}] and j = [{s, t, u}]
0 otherwise.
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Lemma 2.5.53. Given a Coxeter group W , the extension of H0(DA3 ;Z2) by H0(D••;Z2)

in the spectral sequence is completely determined by the extension matrix XW defined in Def-

inition 2.5.52.

Proof. For two finite indexing sets I and J , the extensions of ⊕
J
Z2 by ⊕

I
Z2 are classified

by

Ext(⊕
I
Z2,⊕

J
Z2) = ⊕

I
⊕
J

Ext(Z2,Z2)

= ⊕
I
⊕
J
Z2.

Under this classification, an extension is given by a tuple of entries, either zero or 1, for each

pair (i, j) in I×J . The (i, j) entry is zero if the restriction to these summands in the extension

sequence is a trivial extension of Z2 by Z2 (Z2 ⊕Z2), and 1 if the extension is the non-trivial

extension of Z2 by Z2 (Z4). Letting the (i, j) entry in the tuple be X(i, j) gives an I × J
matrix X.

The extension of H0(DA3 ;Z2) by H0(D••;Z2) is given by the following extension sequence

0 // H0(D••;Z2) // Y // H0(DA3 ;Z2) // 0

0 //
⊕

π0(D••)
Z2

// Y //
⊕

π0(DA3
)

Z2
// 0.

By Lemma 2.5.51, we know that the restriction on the right to a Z2 summand with index a

class of vertices [{s, t, u}] in π0(DA3) is the non-trivial extension by the Z2 summand with

index given by the corresponding class of vertices [{s, u}] in π0(D••). Let I = π0(D••) and

J = π0(DA3) then the matrix X is precisely XW from Definition 2.5.52. �

Example 2.5.54. For example consider the Coxeter group defined by the following dia-

gram:

s t u

5

v w x

then the diagram DA3 is given by

{s, t, u} {v, w, x}

and the diagram D•• is given by
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{s, u}
{s, v}{s, w}

{s, x}
{t, x}{u, x}

{v, x}

{t, v} {t, w}{u,w}

where the vertices corresponding to the twoW (A3) subgroups: {s, u} corresponding to {s, t, u}
and {v, x} corresponding to {v, w, x} are present at either end of D••. The extension sequence

takes the form

0 // A // B // B/A // 0

0 // H0(D••;Z2) // B // H0(DA3 ;Z2) // 0

0 // Z2
// B // Z2 ⊕ Z2

// 0

and we know from Lemma 2.5.51 that given the spectral sequence for the W (A3) subgroup

corresponding to the representative for either of the Z2 components on the right, there is a

non-trivial extension of this Z2 by the left Z2 to get a Z4. The extension matrix is therefore

XW =
(
1 1

)
with the row corresponding to the component of π0(D••) represented by {s, u} = {v, x} and

the columns to the two components of π0(DA3) represented by {s, t, u} and {v, w, x}. In

reality this can be realised as B = Z2 ⊕ Z4 with maps as follows.

0 // Z2
// Z2 ⊕ Z4

// Z2 ⊕ Z2
// 0

a � // (0, 2a)

(b, c) � // (b+ c, b).

Lemma 2.5.55. There exist no non-trivial extensions from the

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)

component of C to B.

Proof. We recall that subdiagrams of the form H3 and B3 in DW represent these sum-

mands of C. We compute the spectral sequence for the groups corresponding to these dia-

grams, and compare to the third homology of the corresponding group W (H3) or W (B3) as

computed using the De Concini - Salvetti resolution for finite Coxeter groups in [18]. Through

these comparisons we observe that there are no non-trivial extensions present, as in the proof

of Lemma 2.5.50. These calculations are found in Appendix B.

�
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Lemma 2.5.56. A class H1(D�
••;Z2) in C exists only when the spectral sequence is calcu-

lated for a Coxeter group W for which DW has a subdiagram of the form Y tA1 where Y is a

1-cycle in the Coxeter diagram Dodd. That is a class in H1(D�
••;Z2) is represented by a loop

containing only odd edges, along with a vertex disjoint from this loop, in DW .

Proof. Let the vertices of the cycle be given by {t1, . . . , tk} and the disjoint vertex be

given by s. Then the cycle given by {(t1, s), . . . (tk, s)} represents a cycle in H1(D�
••;Z2).

To show that all classes in H1(D�
••;Z2) are represented by cycles of this form, suppose that

{(x1, y1), . . . , (xp, yp)} represents a cycle. Without loss of generality, suppose x1 = x2. Then

there exists an edge between (x1, y1) and (x1, y2) in D••. That is, m(y1, y2) must be odd.

Now either x1 = x3 or y2 = y3, suppose y2 = y3 then it follows that m(x1, x3) is odd. Then

the vertices have the following form in the Coxeter diagram

x1

odd odd
x3 y1 y2

and so in the diagram D•• we have

(x1, y1) (x3, y1)

(x1, y2) (x3, y2)

and since this is a square, in the diagram D�
•• it is filled in, and thus the cycle

{(x1, y1), (x1, y2), (x3, y2), (x3, y1)} is a boundary. It follows that the sub-cycle

{(x1, y1), (x1, y2), (x3, y2)} of {(x1, y1), . . . , (xp, yp)} can be replaced with the vertex

{(x3, y1)}, i.e. in H1(D�
••;Z2) the cycle {(x1, y1), . . . , (xp, yp)} is equal to the cycle

{(x3, y1), (x4, y4) . . . , (xp, yp)}. Without loss of generality, we can now assume that x3 = x4

and we are back to the start of the analysis of the cycle. Therefore, by reiterating this

procedure we build a cycle equivalent, via boundaries, to {(x1, y1), . . . , (xk, yk)} and where

x1 = xi for all i. This is exactly a subdiagram of the form Y t A1 in the Coxeter diagram

DW , where Y is a loop in Dodd. �

Corollary 2.5.57. There exists a possible extension problem between the H1(D�
••;Z2)

component in C and B, only when the spectral sequence is calculated for a Coxeter group

W for which DW has a subdiagram of the form Y t A1 where Y is a 1-cycle in the Coxeter

diagram Dodd.

2.5.58. Proof of Theorem B.

Theorem 2.5.59. Given a finite rank Coxeter group W such that DW does not have a

subdiagram of the form Y t A1, where Y is a loop in the Coxeter diagram Dodd, there is an
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isomorphism

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

where each diagram is as described in Definition 2.1.12, and viewed as a simplicial complex.

In this equation, © denotes the non-trivial extension of H0(DA3 ;Z2) by H0(D••;Z2) given by

the extension matrix XW defined in Definition 2.5.52.

If W is such that DW has a subdiagram of the form Y t A1 where Y is a 1-cycle in the

Coxeter diagram Dodd, then there is an isomorphism modulo extensions

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3, 6=∞

Zm(s,t))⊕H0(D even ;Z2)

⊕( ⊕
W (H3)⊆W
W (B3)⊆W

Z2)⊕ (H0(DA3 ;Z2)©H0(D••;Z2))

⊕H1(D�
••;Z2),

where the unknown extensions involve the H1(D�
••;Z2) summand.

Proof. The two cases, when DW contains a diagram of the form Y t A1, and when it

does not, are a direct result of Lemma 2.5.56 and Corollary 2.5.57. That is, if there is not

a subdiagram of type Y t A1 then the summand H1(D�
••;Z2) is zero, and so there are no

possible non-trivial extensions.

The other possible extension problems are solved in Lemmas 2.5.50, 2.5.51 and 2.5.55.

This gives that the only non-trivial extension is the non-trivial extension of H0(DA3 ;Z2) by

H0(D••;Z2), which is given by the extension matrix XW of Definition 2.5.52 by Lemma 2.5.53.

The computation of the blue diagonal of the isotropy spectral sequence for the Davis

complex at E∞, alongside the solutions to these extension problems, gives the formula for

H3(W ;Z) as stated in the theorem. �



CHAPTER 3

Background: Artin groups

3.1. Definition and examples

Recall from Definition 1.1.6 the definition of π(a, b; k):

π(a, b; k) =

length k︷ ︸︸ ︷
aba . . .

and let us refer to this as an alternating product relation of length k. Recall from Remark

1.1.7 the alternative presentation of a Coxeter group W with generating set S:

W =
〈
S
∣∣∣ (s)2 = e ∀s ∈ S
π(s, t;m(s, t)) = π(t, s;m(s, t)) ∀s, t ∈ S

〉
.

Then the corresponding Artin group is given by forgetting the involution condition.

Definition 3.1.1. For every Coxeter group W there is a corresponding Artin group AW
with presentation

AW = 〈σs for s ∈ S | ∀s, t ∈ S, π(σs, σt;m(s, t)) = π(σt, σs;m(s, t))〉.

We note that the Coxeter diagram DW also contains all the information about the Artin group

presentation. Since this definition no longer implies that the generators are involutions, the

group includes formal inverses σ−1
s for each generator. Words in A are therefore strings of

‘letters’ for which the alphabet consists of σs and σ−1
s for s in S.

Example 3.1.2. The Artin group AW corresponding to the Coxeter group W = Sn is the

braid group. We denote this Bn. The corresponding diagram DW is

σ1 σ2 σ3
. . .
σn−2 σn−1

where we relabel σsi to σi for ease of notation. From this diagram we see that there is no edge

between generators when the subscript differs by 2 or more, and so these generators commute.

When the subscript of two generators differs by 1 there is an unlabelled edge between them,

which means that they satisfy an alternating product relation of length 3 on both sides. The

presentation is therefore given by

Bn =
〈
σi for si ∈ S |

σiσj = σjσi ∀|i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 1 ≤ i ≤ (n− 2)

〉
95
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and this is the standard presentation for the braid group on n strands, with the generator σi
given pictorially as

i i+ 1

Here we note that if two generators have subscripts that differ by at least 2 they will involve

disjoint strands, and so will commute. The relation σiσi+1σi = σi+1σiσi+1 follows from the

pictorial representation below

=

σiσi+1σi = σi+1σiσi+1

We call the half twists relating to the generators σi positive twists and those relating to

generators σ−1
i negative twists.

Example 3.1.3. When all possible edges in the Coxeter diagram DW are present and

labelled with∞ this corresponds to the Artin group AW being the free group on |S| generators.

Recall an edge between two vertices s and t being labelled with∞ corresponds to m(s, t) =∞,

or when viewed under the Artin presentation, there is no alternating product relation between

σs and σt. Therefore the group has presentation

AW = 〈σs for s ∈ S〉,

which is precisely the free group on |S| generators.

Example 3.1.4. When there are no edges in the Coxeter diagram DW this corresponds

to the Artin group AW being the free abelian group on |S| generators. Recall that no edge

between two vertices s and t corresponds to m(s, t) = 2, or when viewed under the Artin

presentation, there is an alternating product relation between σs and σt of length 2: σs and
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σt commute. Therefore the group has presentation

AW = 〈σs for s ∈ S |σsσt = σtσs ∀s 6= t ∈ S〉,

which is precisely the free abelian group on |S| generators.

Definition 3.1.5. When all of the edges in the Coxeter diagram are labelled with ∞,

but not necessarily all possible edges are present (some m(s, t) may be equal to 2) then the

corresponding Artin group is called a right angled Artin group, or RAAG.

Definition 3.1.6. When the Coxeter group W is finite, i.e. when its diagram DW is a

disjoint union of diagrams from Proposition 1.1.12, then the corresponding Artin group AW
is called a finite type Artin group, or a spherical Artin group. Note that an Artin group itself

is never finite, as all generators have infinite order.

Much of the known theory of Artin groups is concentrated around RAAGs and finite type

Artin groups, though we do not restrict ourselves to either of these families in our results.

In general little is known about Artin groups. For instance the following properties hold for

finite type Artin groups [13]:

• there exists a finite model for the classifying space K(AW , 1),

• AW is torsion free,

• the centre of AW is Z,

• AW has solvable word and conjugacy problem

and to this date these properties are not known for general Artin groups. For instance the word

problem requires an algorithm to determine if a word in the Artin group AW , is equivalent

via the group relations to the identity, or equivalently the conjugacy problem requires an

algorithm to determine whether, given two words in AW , one is a conjugate of the other. We

now consider the first point in detail.

3.2. The K(π, 1) conjecture

Definition 3.2.1. Given a CW complex X and a discrete group G we say that X is

K(G, 1), space if X is aspherical with fundamental group G. Such a space is a model for the

classifying space BG of the group G, from which one can construct a free resolution of Z over

ZG and hence calculate the (co)homology of G.

Example 3.2.2. We now look in detail at a K(Bn, 1) space for the braid group on n

strands. It is known that the space of unordered configurations of n points in the plane is

a classifying space for the braid group Bn (this was proved by Fox and Neuwirth [24]). An

ordered configuration can be viewed as n ordered points on the complex plane C, or one point

in Cn, such that no two of its co-ordinates are equal. The set in Cn consisting of points with

two equal co-ordinates:

Hi,j = {(x1, . . . , xn) ∈ Cn |xi = xj}
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is a codimension 1 subspace of Cn, or a complex hyperplane of Cn. Therefore the space of

ordered configurations in C can be viewed as the following space:

M = Cn\(
⋃

i,j∈{1,...,n}
i 6=j

Hi,j).

Since we wish to consider unordered configurations, we take the quotient of M under the

action of the symmetric group Sn which permutes the coordinates.

N =M/Sn

Putting this all together gives that the classifying space for the braid group Bn is equivalent

to a hyperplane complement in Cn, modulo the action of the symmetric group Sn. We note

here that the symmetric group Sn is the Coxeter group associated to the braid group Bn.

In general, one can associate a hyperplane complement to each Coxeter group W , such that

there is a free action of the Coxeter group W . When you consider this hyperplane complement

modulo this W action, the corresponding quotient has as its fundamental group the Artin

group AW . In some known cases this quotient space is a K(AW , 1), and this is conjectured

to be true for all Artin groups. In the following section we make this precise, following Davis

[17], notes by Paris [40] and the introduction to a paper on RAAGs by Charney [13].

Definition 3.2.3 (see Davis [17, 6.1.1]). A linear reflection on a vector space V is a

linear transformation r : V → V such that r has order two and the fixed subspace of r is a

hyperplane Hr in V . We call a group generated by such linear reflections a reflection group.

Proposition 3.2.4 (see Davis [17, 6.6.3]). If W is a finite group generated by a set of

linear reflections S on a finite dimensional vector space V then (W,S) is a Coxeter system.

We can associate to such a group W a bilinear form B on V which encodes the information

of each generating reflection, see for example [13] or [17, Chapter 6]. When the reflection

group is finite, B is positive definite and so defines an inner product on V . Identifying (V,B)

and (Rn, ·) identifies the reflection hyperplanes ofW in V with a finite hyperplane arrangement

in Rn:

A = {Hr | r is a reflection in W}.
It follows that every point in Rn with non-trivial stabiliser under the group action of W lies in

a hyperplane in A. Complexifying gives an arrangement of complex hyperplanes in Cn such

that W acts freely on the complement:

M(A) = Cn\(
⋃

Hr∈A
CHr).

Artin groups were first introduced by Brieskorn [9] as the fundamental groups of the quotient

M(A)/W and in the 1970s Deligne proved the following theorem [19].
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Theorem 3.2.5 (Deligne’s Theorem, see Charney [13, 1.1]). For W a finite Coxeter group

and AW the associated Artin group, M(A)/W is aspherical with fundamental group AW , that

is M(A)/W is a K(AW , 1).

For arbitrary Artin groups, there is a well known conjecture called the K(π, 1) conjec-

ture, formulated by Arnol’d, Thom and Pham. This conjecture states than an analogue of

Deligne’s theorem holds for all Artin groups. The analogue of the hyperplane complement

was formulated by Vinberg, and is as follows.

Definition 3.2.6 (see Davis [17, A.1.8]). A convex polyhedral cone in a finite vector space

V is the intersection of a finite set of linear half-spaces in V .

Definition 3.2.7 (see Paris [40]). Let V be a finite-dimensional real vector space and let

C0 be a closed convex polyhedral cone in V with non-empty interior denoted C0. Define a wall

of C0 to be a hyperplane of V determined by a codimension 1 face of C0. Let H1, . . . Hn be

the walls of C0 and let si be a linear reflection which fixes Hi. Denote W to be the subgroup

of GL(V ) generated by S = {s1, . . . sn}.

Definition 3.2.8. With notation as above, W and S describe a Vinberg system (W,S),

if for all w in W\{1} the transformation of C0 under w is disjoint from C0, i.e. wC0 ∩C0 = ∅.

Definition 3.2.9. Given a Vinberg system (W,S) let

Ī =
⋃
w∈W

wC0.

Then the interior I is called the Tits cone of the system.

The following theorem of Vinberg is a prominent result linking Coxeter groups and hy-

perplane arrangements.

Theorem 3.2.10 (Vinberg, see Paris [40, 1.1]). With the above notation, let (W,S) be a

Vinberg system. Then the following are true:

(1) W is a Coxeter group with generating set S.

(2) Ī is a convex cone and I is non-empty.

(3) The Tits cone I is invariant under the action of W , and W acts properly and dis-

continuously on I.

(4) If x ∈ I satisfies that the stabiliser of x is non-trivial, then there exists a reflection

r in W such that r(x) = x.

Definition 3.2.11. For a Vinberg system (W,S) we denote by R the set of reflections in

W , as before we set A = {Hr | r ∈ R}. Then from the previous theorem A is a hyperplane

arrangement in I. We set

M(A) = (I × I)\(
⋃
H∈A

H ×H).
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This agrees with our definition of M(A) when I = V , giving A finite. By the previous

theorem, W acts freely and properly discontinuously on M(A) and hence we can take the

quotient

N (A) =M(A)/W.

Theorem 3.2.12 ( Van der Lek, see Paris [40, 1.2]). Let (W,S) be a Vinberg system

and N (A) be defined as above. Then the fundamental group of N (A) is isomorphic to the

associated Artin group AW .

This result led to the formulation of Deligne’s theorem as a conjecture in this set up:

Conjecture 3.2.13. The space N (AW ) is a K(AW , 1) space.

Remark 3.2.14. It is worth noting here a reformulation of the conjecture in terms of a

finite dimensional CW-complex called the Salvetti complex, denoted by Sal(A) and introduced

by Salvetti in [43], for a hyperplane arrangement A in a finite dimensional real vector space

V . The Salvetti complex is defined in terms of cosets, much like the Davis complex from

section 1.3. Paris extends this definition to any infinite hyperplane arrangement in a non-

empty convex cone I [40] and proves that Sal(A) and M(A) have the same homotopy type.

The K(π, 1) conjecture can therefore be restated as a conjecture about the Salvetti complex.

In general, Charney and Davis [14] proved the following.

Theorem 3.2.15 (Charney and Davis [14]). For (W,S) a Vinberg system, the homotopy

type of the corresponding M(A) and N (A) depends only on the Coxeter diagram DW of the

associated Coxeter group W .

The K(π, 1) conjecture has been proved for large classes of Artin groups [40]. For example

the conjecture holds for:

• Finite type Coxeter groups: this is Deligne’s Theorem 3.2.5.

• Large type Coxeter groups: when the Coxeter group has relations m(s, t) ≥ 3 for all

s 6= t.

• Coxeter groups of dimension 2 : when all T in S satisfy |T | ≤ 2.

• Coxeter groups of FC type: when S=S<∞ := {T ⊆ S |m(s, t) 6=∞∀s, t ∈ T}.
However the conjecture has not been proved to hold for general Artin groups to date. We

apply a reformulation of the K(π, 1) conjecture to our results, which involves the Artin monoid

A+ discussed in the next chapter.



CHAPTER 4

Background: Artin monoids

This section follows Jean Michel A note on words in braid monoids [38] and Brieskorn

and Saito Artin-Gruppen und Coxeter-Gruppen [11].

4.1. Definition and examples

Definition 4.1.1. The Artin monoid A+
W of an Artin group AW associated to a Coxeter

group W is defined as the monoid with the same presentation as A:

A+
W = 〈σs for s ∈ S | ∀σs, σt, π(σs, σt;m(s, t)) = π(σt, σs;m(s, t))〉+.

Words in A+ are therefore strings of ‘letters’ for which the alphabet consists of σs for s in S.

Remark 4.1.2. The group completion of A+
W is AW . That is there is a monoid homomor-

phism A+
W to AW (in this case given by inclusion), and AW satisfies the universal property

that any monoid homomorphism from A+
W to a group G will factor uniquely through AW .

Example 4.1.3. The braid monoid B+
n is the monoid associated to the Artin group Bn,

the braid group, and Coxeter group Sn, the symmetric group. The braid monoid consists of

words in the braid group made from the positive generators σi. In terms of the braid diagrams

these can be viewed as braids consisting of only positive twists.

Definition 4.1.4. We define a submonoid M+ of an Artin monoid A+ to be a parabolic

submonoid if the monoid M+ is generated by the set M+ ∩S. We call this generating set for

the monoid SM .

In this thesis, when referring to an submonoid of an Artin monoid, we will always mean

a parabolic submonoid.

4.2. Divisors in Artin monoids: general theory

Throughout this section let A+ be an Artin monoid.

Definition 4.2.1. Define the length function on an Artin monoid A+ corresponding to a

Coxeter system (W,S)

` : A+ → N
to be the function which maps α in A+ to the minimum word length required to express α in

terms of the generators, as in the definition for Coxeter groups.

101
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Remark 4.2.2. Note here that since there are no inverses in Artin monoids, multiplication

of two words does not lead to any cancellation, and therefore multiplication corresponds to

addition of lengths, i.e. `(ab) = `(a) + `(b).

Definition 4.2.3. For words α and β in A+ we say that α �R β if for some γ in A+

we have β = γα, that is α appears on the right of some expression for β. We say that β is

right-divisible by α, or alternatively that α right divides β.

We define �L similarly, though we do not use this definition in this thesis.

Proposition 4.2.4 (see Michel [38, Prop 2.4]). Artin monoids satisfy left and right can-

cellation, i.e. for a, b and c in A+,

ab = ac⇒ b = c

ba = ca⇒ b = c.

We now consider work by Brieskorn and Saito in their 1972 paper Artin-Gruppen und

Coxeter-Gruppen [11]. They consider least common multiples and greatest common divisors

of sets of words in the Artin monoid. We are interested in the notion of least common multiple.

Definition 4.2.5. Given a set of elements {gj}j∈J in an Artin monoid A+, a common

multiple β is an element in A+ which is right divisible by all gj . That is gj �R β for all gj in

the set. A least common multiple is a common multiple which right-divides all other common

multiples.

Proposition 4.2.6 (Brieskorn and Saito [11, 4.1] ). A finite set of elements in an Artin

monoid either has a least common multiple or no common multiple at all.

Lemma 4.2.7 (Brieskorn and Saito [11]). The letters arising in a least common multiple of

a set of words in an Artin monoid are only those letters which appear in the words themselves.

Definition 4.2.8. Let E be a set of words in the Artin monoid A+. Denote the least

common multiple (if it exists) of E by ∆(E). For α and β two words in A+ denote the least

common multiple of α and β (if it exists) by ∆(α, β).

Definition 4.2.9. Consider a submonoid M+ of an Artin monoid A+. Denote the gener-

ating set for the Coxeter group associated to the monoid by S and to the submonoid by SM .

Given a word α in A+ we define two end sets for the word.

EndGenM (α) = {σs | s ∈ SM , σs �R α}
EndMonM (α) = {β ∈M | β �R α}

Remark 4.2.10. EndGenM (α) is exactly the letters σs for s in SM that the word α can

end with, and EndMonM (α) is exactly the words in M+ that the word α can end with. Note

that EndGenM (α) is a subset of EndMonM (α), consisting of words that have length 1 and

that if EndMonM (α) = ∅ then this implies that α has no right-divisors in M+.



4.3. DIVISORS IN ARTIN MONOIDS: THEORY FOR PROOF 103

4.3. Divisors in Artin monoids: theory for proof

Much of the proof in Chapter 6 is concerned with algebraic manipulation of words in the

Artin monoid. Here we introduce some technical definitions and lemmas used in the proof.

We build up a theory of monoid cosets in the case of Artin monoids, noting that this is very

particular to Artin monoids and many of these techniques will not work with general monoids.

The theory developed in this section is new unless cited.

Lemma 4.3.1. Given α in A+, and M+ a submonoid of A+, the set EndMonM (α) has

a least common multiple ∆(EndMonM (α)) = β which lies in the submonoid M+. That is

there exists β in M+ and γ in A+ such that α = γβ, and if β′ in M+ and γ′ in A+ satisfy

α = γ′β′, it follows that β′ �R β.

Proof. From Proposition 4.2.6 we know that if a common multiple exists, then

∆(EndMonM (α)) exists. α itself is a common multiple of all elements in EndMonM (α), by

definition of EndMonM (α). Furthermore Lemma 4.2.7 notes that only letters appearing in

EndMonM (α) will appear in ∆(EndMonM (α)). By definition, these are letters in M+ and

so ∆(EndMonM (α)) lies in M+. The second part of the lemma applies the definition of the

least common multiple. �

Remark 4.3.2. For a word α in A+ let the least common multiple of EndMonM (α) be

β. We write α with respect to M+ for the word α in A+ such that α = αβ. It will always be

clear in the text for which submonoid M+ we are taking the reduction with respect to.

Definition 4.3.3. For A+ an Artin monoid and M+ a submonoid, let A+(M) be the

following set

A+(M) = {α with respect to M+ | α ∈ A+}.
That is, A+(M) is the set of words in A+ which do not end in any word from M .

Lemma 4.3.4. For all α in A+ and all β in M+, α = αβ where the reduction is taken

with respect to M+.

Proof. Let α = γ, so α = γη for some η in M+, and EndMonM (γ) = ∅ i.e. γ has

no right divisors in M+. Then αβ = γηβ and since η and β are both in M+, it follows

that ηβ ∈ EndMonM (αβ). If ηβ is the least common multiple of EndMonM (αβ) then

it follows that αβ = γ = α so we are done. Therefore suppose that ηβ is not the least

common multiple of EndMonM (αβ), and note that ηβ will be a right divisor of the actual

least common multiple. Then there exists some ζ in M+ of length at least 1 such that ζηβ

is the least common multiple of EndMonM (αβ). It follows that there exists a γ′ = αβ with

EndMonM (γ′) = ∅ and αβ = γ′ζηβ. But αβ = γηβ and it follows from cancellation that

γ = γ′ζ. Since ζ is in M+ with length at least 1 it follows that ζ ∈ EndMonM (γ) which

contradicts EndMonM (γ) = ∅. Therefore ηβ is the least common multiple of EndMonM (αβ)

and it follows that αβ = γ = α. �
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Definition 4.3.5. Consider now the relation ∼ on A+ given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in M+

where M+ is a submonoid of M . Again, if we are using this relation it will be made clear

which submonoid M+ is being considered. We have that ∼ is symmetric and reflexive. Let

≈ be the transitive closure of ∼. That is, α1 ≈ α2 if there is a chain of elements in A+:

α1 ∼ τ1 ∼ τ2 ∼ . . . ∼ τk ∼ α2

for some k. Denote the equivalence class of α in A+ under the relation ≈ with respect to the

submonoid M+ as [α]M .

Lemma 4.3.6. The equivalence classes under ≈ with respect to the submonoid M+ are in

one to one correspondence with the set A+(M), that is for all α1 and α2 in A+:

[α1]M = [α2]M ⇐⇒ α1 = α2

Proof. (⇒) If α1 = α2 = γ with respect to M+, then α1 ∼ γ ∼ α2 so it follows

α1 ≈ α2. We need to show that if α1 ≈ α2 then α1 = α2. Since α1 ≈ α2 there is a chain

α1 ∼ τ1 ∼ τ2 ∼ . . . ∼ τk ∼ α2, so if we show that η = ζ whenever η ∼ ζ for η and ζ in A+ it

will follow that α1 = τ1 = τ2 = . . . = τk = α2. Since η ∼ ζ it follows that for some β1 and

β2 in M+, ηβ1 = ζβ2. From Lemma 4.3.4 we know that η = ηβ1 and similarly ζ = ζβ2 so it

follows

η = ηβ1 = ζβ2 = ζ

which completes the proof. �

Proposition 4.3.7. For M+ a submonoid of A+, A+ ∼= A+(M) ×M+ as sets, via the

bijection

p : A+ → A+(M)×M+

α 7→ (α, β) where α = αβ

and this decomposition respects the right action of M+ on A+.

Proof. To show p is surjective: consider (γ, β) ∈ A+(M) ×M+. Due to Lemma 4.3.4

for any β ∈M+ we have αβ = α. Therefore γβ satisfies p(γβ) = (γ, β) since γβ = γ = γ (we

have γ ∈ A+(M) so EndMonp(γ) = ∅). To show injectivity, suppose p(α1) = p(α2), that is

(α1, β1) = (α2, β2). This translates to α1 = α1β1 = α2β2 = α2, therefore p is injective. Under

this decomposition, the action of m in M+ satisfies p(α ·m) = (α, β ·m) where α = αβ, again

due to Lemma 4.3.4. Therefore the right action of M+ under this decomposition acts trivially

on the first factor and as right multiplication on the second. �

Proposition 4.3.8 (see Michel [38, 1.5]). If generators s and t in SM are in EndGenM (α)

for some α in A+ then ∆(s, t) is in EndMonM (α).
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Lemma 4.3.9. Consider F a subset of EndMonM (α) for some submonoid M+ of A+ and

some α in A+. Then ∆(F ) is in EndMonM (α).

Proof. Since F is a subset of EndMonM (α), which has a least common multiple, then

certainly ∆(F ) exists. The element ∆(F ) divides all other common multiples of F . Since

∆(EndMonM (α)) is a common multiple for EndMonM (α), it is certainly a common multiple

for F . Therefore ∆(F ) �R ∆(EndMonM (α)) and it follows that ∆(F ) is in EndMonM (α).

�

Definition 4.3.10. Words α and β in an Artin monoid are defined to letterwise commute

if each letter in the word α commutes with every letter in the word β, and the set of letters

that α contains is disjoint from the set of letters that β contains.

Lemma 4.3.11. If β and γ are in EndMonM (α) and β and γ letterwise commute, it

follows that:

• ∆(β, γ) = βγ = γβ

• ∆(β, γ) is in EndMonM (α)

Proof. Since β and γ letterwise commute, they contain distinct generators. The relations

in any Artin monoid have the same generators on both sides of the equality, therefore every

letter in the words β and γ must appear in ∆(β, γ). If both β and γ have length 1, say β = σ

and γ = τ for generators σ and τ then since the words letterwise commute it follows that σ

commutes with τ . Therefore since στ = τσ and both generators must appear in ∆(β, γ) it

follows that

∆(β, γ) = στ = τσ = βγ = γβ

as required. Similarly, if β = σ1 . . . σk has length k, and γ = τ has length 1 then since the

words contain distinct generators it follows:

∆(β, τ) = ∆(σ1 . . . σk, τ) = (σ1 . . . σk)τ = τ(σ1 . . . σk) = βτ = τβ.

Suppose now that β = σ1 . . . σk has length k and γ = τ1 . . . τl has length l. It is certainly true

that β �R βγ and γ �R βγ. We must show that if x in A+ is a common multiple of β and γ

then βγ = γβ is in EndMonM (x). Since x is a common multiple it follows that

x = yβ = yσ1 . . . σk x = zγ = zτ1 . . . τl

for some y and z in A+, and since both β and τl are in EndMonM (x) we have from Lemma

4.3.9 that ∆(β, τl) = βτl = τlβ is in EndMonM (x). Therefore since x = yβ, by cancellation

of β, τl is in EndMonM (y) and so y = y1τl for some y1 in A+. The previous equation becomes

x = x1τl = yβ = y1τlβ = y1βτl x = x1τl = zγ = zτ1 . . . τl

for some x1 in A+. By cancellation of τl we have that x1 = y1β and x1 = zτ1 . . . τl−1. Therefore

x1 satisfies both β and τl−1 are in EndMonM (x1) and, repeating the same argument, we
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conclude that τl−1 is in EndMon(y1) and so y1 = y2τl−1 for some y2 in A+. The previous

equation becomes

x = x2τl−1τl = yβ = y2τl−1τlβ = y2βτl−1τl

for some x2 in A+. Continuing in this fashion we arrive at

x = xlτ1 . . . τl = yβ = ylτ1 . . . τlβ = ylγβ

for some xl in A+, and so βγ = γβ is in EndMonM (x) as required. This shows that ∆(β, γ) =

βγ = γβ.

Invoking Lemma 4.3.9 with F = {β, γ} we have ∆(F ) = ∆(β, γ) = βγ = γβ is in

EndMonM (α). �

Lemma 4.3.12. If words α, a and b in A+, are such that b �R αa and a and b letterwise

commute, then it follows that b �R α.

Proof. An equivalent way of writing m �R n for m, n in A+ is m ∈ EndMonA(n)

where the end set is taken with respect to the full monoid A+. Since a and b are both in

EndMonA(αa) it follows that ∆(a, b) is in EndMonA(αa), from Lemma 4.3.9. Since a and b

letterwise commute, ∆(a, b) = ab = ba. Therefore ba is in EndMonA(αa), and by cancellation

of a it follows that b is in EndMonA(α) as required. �

4.4. Relation to the K(π, 1) conjecture

In 2002 Dobrinskaya published a paper relating the classifying space of the Artin monoid

BA+
W to the K(π, 1) conjecture. This was later translated into English as Configuration

Spaces of Labelled Particles and Finite Eilenberg - MacLane Complexes [20]. The main result

of the paper was the following:

Theorem 4.4.1 (Dobrinskaya [20, Theorem 6.3]). Given an Artin group AW and its

associated monoid A+
W , the K(π, 1) conjecture holds if and only if the natural map between

their classifying spaces, BA+
W → BAW , is a homotopy equivalence.

She proved this via the introduction of a finite subset of the Artin monoid A+
f ⊂ A+

and a notion of classifying space BA+
f for this subset, such that the map BA+

f → BA+

was a homotopy equivalence. She then proved that BA+
f was homotopy equivalent to the

hyperplane complement M(A) defined in Definition 3.2.11. Putting this together gave that

the classifying space for the monoid BA+ was homotopy equivalent to M(A) [20, Theorem

6.2], which completes the proof.

4.5. Semi-simplicial constructions with monoids

4.5.1. Semi-simplicial background.
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Definition 4.5.2 (see Ebert and Randal-Williams [21, 1.1]). Let ∆ denote the category

which has as its objects the non-empty finite ordered sets [n] = {0, 1, . . . , n}, and as its

morphisms monotone functions. These functions are generated by the basic functions:

Di : [n] → [n+ 1] for 0 ≤ i ≤ n
{0, 1, . . . , n} 7→ {0, 1, . . . , î, . . . , n+ 1}
Si : [n+ 1] → [n] for 0 ≤ i ≤ n

{0, 1, . . . , n+ 1} 7→ {0, 1, . . . , i, i, . . . n}

The opposite category ∆op is known as the simplicial category. We denote the opposite of the

maps Di by ∂i and the opposite of the maps Si by si. We call these the face maps and the

degeneracy maps respectively.

Let ∆inj ⊂ ∆ be the subcategory of ∆ which has the same objects but only the injective

monotone maps as morphisms, generated by the Di. The opposite category ∆op
inj is known as

the semi-simplicial category and its morphisms are therefore generated by the face maps ∂i.

Definition 4.5.3 (see Ebert and Randal-Williams [21, 1.1]). A simplicial object in a

category C is a covariant functor X• : ∆op → C. A semi-simplicial object is a functor X• :

∆op
inj → C. We denote X•([n]) by Xn. A (semi-)simplicial map f : X• → Y• is a natural

transformation of functors, and in particular has components fn : Xn → Yn. Simplicial

objects in C form a category denoted sC, and semi-simplicial objects a category denoted ssC.
When C is equal to Set the (semi-)simplicial object is called a (semi-)simplicial set.

Remark 4.5.4. A semi-simplicial object in a category C is equivalent to the following

data:

(a) An object Xp in C, for p ≥ 0

(b) Morphisms ∂pi : Xp → Xp−1 for 0 ≤ i ≤ p and all p ≥ 0 in C called face maps which

satisfy the following simplicial identities

∂p−1
i ∂pj = ∂p−1

j−1∂
p
i if i < j.

Definition 4.5.5 ([see Ebert and Randal-Williams [21, 1.3]). An augmented semi - sim-

plicial object in C is a triple (X•, X−1, ε•) such that X• is a semi-simplicial object in C, X−1

is an object of C and ε• is a family of morphisms such that εp : Xp → X−1 and εp−1 ◦ ∂i = εp
for all p ≥ 1 and 0 ≤ i ≤ p.

Example 4.5.6 (see Ebert and Randal-Williams [21, 1.2]). The standard n-simplex has

two equivalent manifestations: as a simplicial object in Set and as an object in Top. When

viewed as a simplicial set the standard n-simplex is denoted ∆n
• and is defined via the functor

∆n
m = ∆n

• ([m]) = hom∆([m], [n]) for all [m] in ∆op. When viewed as an object in Top the
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standard n-simplex is denoted |∆n| and defined to be

|∆n| :=
{

(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1 and ti ≥ 0∀i
}
.

One can associate to a morphism φ : [m]→ [n] in ∆ a continuous map

φ∗ : |∆n| → |∆m|

(t0, . . . , tn) 7→ (s0, . . . , sm) where sj =
∑
φ(i)=j

ti.

That is, morphisms send the jth vertex of the simplex |∆n| to the φ(j)th vertex of |∆m| and

extend linearly. Under this viewpoint the map Di
∗ sends |∆n| to the ith face of |∆n+1| and

the map Si∗ collapses together the ith and (i+ 1)st vertices of |∆n+1| to give a map to |∆n|.

Applying several face maps in a row can be denoted as a tuple (∂p−1
i1

, ∂p−2
i2

, . . . , ∂p−kik
)

where ∂p−1
i1

is the first face map to be applied, followed by ∂p−2
i2

, etc. For ease of notation

we assume that the second map in the tuple maps from the target of the first map, and the

third from the target of the second map etc., and so we dispense with superscripts, writing

the tuple as (∂i1 , ∂i2 , . . . , ∂ik).

Lemma 4.5.7. With the above notation, the tuple of face maps can be organised such that

ij+1 ≥ ij for all j.

Proof. Suppose ij+1 < ij in the tuple (∂i1 , ∂i2 , . . . , ∂ik).. The simplicial identities then

tell us that applying ∂ij before ∂ij+1 is the same as applying ∂ij+1 before ∂ij−1, i.e.

∂ij+1∂ij = ∂ij−1∂ij+1 since ij+1 < ij

Therefore (∂i1 , ∂i2 . . . , ∂ij , ∂ij+1 , . . . , ∂ik) = (∂i1 , ∂i2 . . . , ∂ij+1 , ∂ij−1, . . . , ∂ik). Since ij+1 < ij ,

it follows that ij − 1 ≥ ij+1. Relabelling ij := ij+1 and ij+1 := ij − 1 gives

(∂i1 , ∂i2 . . . , ∂ij , ∂ij+1 , . . . , ∂ik) such that ij+1 ≥ ij . Applying this process reduces the sum∑k
j=1 ij by one, and therefore iteration of this process must terminate. If we apply this

process enough times, we get ij+1 ≥ ij for all j. �

Definition 4.5.8 (see Ebert and Randal-Williams [21, 1.2]). The geometric realisation

of a semi-simplicial space is denoted by ‖X•‖ and defined to be

‖X•‖ :=
∐
n≥0

Xn × |∆n|/ ∼

where ∼ is generated by (x, t) ∼ (y, u) whenever ∂i(x) = y and Di(u) = t.

Definition 4.5.9. Given a semi-simplicial map f• : X• → Y• there is an induced map

‖f•‖ : ‖X•‖ → ‖Y•‖ which we call the geometric realisation of the semi-simplicial map f•.
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Definition 4.5.10 (see Ebert and Randal-Williams [21, 1.4]). A bi-semi-simplicial object

in a category C is a functor X•• : (∆inj × ∆inj)
op → C. We write Xp,q = X••([p], [q]). We

write the image of the standard face maps in each simplicial direction (∂i× id) and (id× ∂j),
as ∂i,• and ∂•,j . We note that (∂i × ∂j) = (∂i,• ◦ ∂•,j) = (∂•,j ◦ ∂i,•) : Xp,q → X(p−1),(q−1)

and we denote this map ∂i,j . When C is equal to Set the bi-semi-simplicial object is called a

bi-semi-simplicial set.

Remark 4.5.11. A bi-semi-simplicial set can be viewed as a semi-simplicial object in

ssSet in two ways:

1. X•,q : [p] 7→ (X• : [q] 7→ Xp,q) with face maps ∂i,•.

2. Xp,• : [q] 7→ (X• : [p] 7→ Xp,q) with face maps ∂•,j .

Definition 4.5.12 (see Ebert and Randal-Williams [21, 1.2]). Given a bi-semi-simplicial

set X•,• we define its geometric realisation to be

‖X•,•‖ =
∐
p,q≥0

Xp,q × |∆p| × |∆q|/ ∼

where ∼ is generated by the (x, t1, t2) ∼ (y, u1, u2) whenever (∂i,j)(x) = y, Di(u1) = t1 and

Dj(u2) = t2. This is equivalent to taking the geometric realisation of the semi-simplicial set

first in the p direction, and then the q, or the q followed by the p. This is due to the following

homeomorphisms [21, 1.9,1.10]

‖X•,•‖ ∼= ‖X•,q : [p] 7→ ‖X• : [q] 7→ Xp,q‖‖ ∼= ‖Xp,• : [q] 7→ ‖X• : [p] 7→ Xp,q‖‖.

4.5.13. Semi-simplicial constructions using monoids and submonoids. The fol-

lowing description of the geometric bar construction and related definitions loosely follows

Chapter 7 of May’s Classifying spaces and fibrations [36].

Definition 4.5.14. Let M be a monoid and X and Y be spaces with a left and right

action of M respectively. Then the bar construction denoted B(Y,M,X) is the geometric

realisation of the semi-simplicial space B•(Y,M,X) given by

Bn(Y,M,X) = Y ×Mn ×X.

Elements in Bn(Y,M,X) are written as y[g1, . . . , gn]x for y in Y , gi in M for 1 ≤ i ≤ n and

x in X. Face maps are given by

∂i(y[g1, . . . , gn]x) =


yg1[g2, . . . , gn]x if i = 0

y[g1, . . . , gigi+1, . . . , gn]x if 1 ≤ i ≤ n− 1

y[g1, . . . , gn−1]gnx if i = n.

Definition 4.5.15. Consider the bar construction B(∗,M, Y ) for Y space with an action

of the monoid M on the left, and ∗ is a point, on which M acts trivially. This is the geometric
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realisation of the semi-simplicial set B•(∗,M, Y ) given by

Bj(∗,M, Y ) = ∗ ×M j × Y.

Elements are written as [m1, . . . ,mj ]y for mi in M for 1 ≤ i ≤ j and y in Y . Face maps are

given by

∂i([m1, . . . ,mj ]y) =


[m2, . . . ,mj ]y if i = 0

[m1, . . . ,mimi+1, . . . ,mj ]y if 1 ≤ i ≤ j − 1

[m1, . . . ,mj−1]mjy if i = j.

We call the associated bar construction the homotopy quotient of Y over M and denote it

B(∗,M, Y ) = M \\ Y . When we have a monoid M acting on a space Y on the right we define

the homotopy quotient to be B(Y,M, ∗) = Y //M .

Example 4.5.16. Consider the bar construction B(∗, N,M) for N a submonoid of M

acting on M on the left, by left multiplication, and ∗ a point, on which N acts trivially. Then

the homotopy quotient of M over N is B(∗, N,M) = N \\M . This is the geometric realisation

of the semi-simplicial set B•(∗, N,M) given by

Bj(∗, N,M) = ∗ ×N j ×M.

Elements are written as [n1, . . . , nj ]m for ni in N for 1 ≤ i ≤ j and m in M . Face maps are

given by

∂i([n1, . . . , nj ]m) =


[n2, . . . , nj ]m if i = 0

[n1, . . . , nini+1, . . . , nj ]m if 1 ≤ i ≤ j − 1

[n1, . . . , nj−1]njm if i = j.

We can build a similar homotopy quotient for a submonoid N acting on M on the right

by right multiplication. Then the associated homotopy quotient is the geometric realisation

B(M,N, ∗) = M // N .

Lemma 4.5.17. The homotopy quotient of a group G or monoid M under a point ∗ is

a model for the classifying space of the group or monoid, i.e. BG ' G \\ ∗ ' ∗ // G and

BM 'M \\ ∗ ' ∗ // M .

Proof. Writing down the simplices and face maps for the homotopy quotients G \\ ∗ and

G // ∗ gives exactly the simplices and face maps for the standard resolution or bar resolution

of G, which is a model for BG (see e.g. [12]). This holds similarly for the monoid M . In fact

in [36] this is how the classifying spaces BG and BM are defined. �

Lemma 4.5.18. For a monoid M , M \\M ' ∗.
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Proof. We introduce an augmentation of the semi-simplicial space, as in Definition 4.5.5,

by setting (M \\M)−1 = ∗ and the augmentation map ε• to be the trivial map to the point

at each level. By [21, Lemma 1.12] the map ‖ε•‖ : M \\M → ∗ is a homotopy equivalence if

there exist maps hp+1 : (M \\M)p → (M \\M)p+1 such that:

(1) ∂p+1hp+1 = Id(M\\M)p

(2) ∂ihp+1 = hp∂i for 0 ≤ i < p+ 1

(3) ε0h0 = Id(M\\M)−1

Letting

hp+1 : (M \\M)p → (M \\M)p+1

[m1, . . . ,mp]m 7→ [m1, . . . ,mp,m]e

these three hypotheses are easily verified and so ‖ε•‖ : M \\M → ∗ is a homotopy equivalence.

�

Lemma 4.5.19. Let N be a monoid and S be a set such that N acts on S on the right.

Suppose S can be decomposed as S ∼= X × Y and, under this decomposition, the action of N

restricts to a right action on the Y component and trivial action on the X component. Then

the homotopy quotient satisfies

S // N ∼= (X × Y ) // N ' X × (Y // N)

where the homotopy equivalence is given by the geometric realisation of the levelwise map on

the bar construction

Bp((X × Y ), N, ∗) → X ×Bp(Y,N, ∗)
(x, y)[n1, . . . , np] 7→ (x, y[n1, . . . , np])

for x ∈ X, y ∈ Y and ni ∈ N for all i.

Proof. The homotopy quotient S // N is the geometric realisation of the simplicial set

B•(S,N, ∗) with the set of j-simplices given by

Bj(S,N, ∗) = S ×N j

and face maps given by Definition 4.5.15, the first face map ∂1 encompassing the right action

of N on S. Under the decomposition S ∼= X × Y the set of j-simplices is given by

Bj(S,N, ∗) ∼= (X × Y )×N j ∼= X × (Y ×N j)

where the second isomorphism highlights that the action of N on S can be restricted to a

right action on Y , since the action is trivial on the X component. Note that the second factor

is precisely the set of j-simplices in Bj(Y,N, ∗), and since the face maps act trivially on the X

factor, the face maps in Bj(S,N, ∗) induce face maps in Bj(Y,N, ∗) under the decomposition.

The proof is concluded by taking the geometric realisation of B•(S,N, ∗) and the geometric

realisation of X ×B•(Y,N, ∗), noting that ‖X ×B•(Y,N, ∗)‖ ' X × ‖B•(Y,N, ∗)‖. �
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Given an Artin monoid A+ and a parabolic submonoid M+, recall from the previous

section that A+(M) is the set of words in A+ which do not end in words in M+ and there is

a decomposition as sets (Proposition 4.3.7), A+ ∼= A+(M)×M+. This decomposition maps

α in A+ to (α, β) where α = αβ (as defined in Remark 4.3.2) and the right action of M+ on

A+ descends to a trivial action on A+(M) and a right action on M+.

Proposition 4.5.20. With notation as above, the map

A+ // M+ → A+(M)

which is defined levelwise on the bar construction B•(A
+,M+, ∗) by

Bp(A
+,M+, ∗) → A+(M)

α[m1, . . . ,mp] 7→ α

is a homotopy equivalence.

Proof. From Proposition 4.3.7 A+ ∼= A+(M)×M+ and this decomposition respects the

right action of M+ on A+. Then

A+ // M+ = (A+(M)×M+) // M+

' A+(M)× (M+ // M+)

' A+(M)× ∗
= A+(M)

where the first homotopy equivalence uses Lemma 4.5.19 and the second homotopy equivalence

uses Lemma 4.5.18. The levelwise map given by these two lemmas is precisely the map in the

statement. �

Proposition 4.5.21. Let A+ be a monoid and M+ be a submonoid. Consider two maps

f and g : A+ \\A+ → A+ \\A+ which are equivariant with respect to the action of M+ on the

right of A+ \\ A+. Since A+ \\ A+ ' ∗ it follows that f and g are homotopic. We show that

there exists an M+ equivariant homotopy between the two maps.

Proof. Let the k-cell of A+ \\A+ corresponding to geometric realisation of the k-simplex

[p1, . . . , pk]a of Bk(∗, A+, A+) (as described in 4.5.15) be denoted by the tuple (p1, . . . , pk, a),

with pi and a in A+. There is a right action of A+ on the k-cells given by (p1, . . . , pk, a) ·µ =

(p1, . . . , pk, aµ). Define the set of elementary k-cells to be those with tuple (p1, . . . , pk, e)

where e is the identity element in the monoid, and denote this cell D(p1, . . . , pk). Then

every k-cell is uniquely determined by an elementary k-cell and an element a in A+, since

(p1, . . . , pk, a) = D(p1, . . . , pk) · a. Denote the set of k-cells in A+ \\ A+ as (A+ \\ A+)k. The

isomorphism of 4.3.7, gives that A+ = A+(M) ×M+, let a = ām under this decomposition.
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Then we get the following description for k-cells

(A+ \\A+)k ∼=
⊔

(p1,...,pk)

D(p1, . . . , pk)×A+ ∼=
⊔

(p1,...,pk)

D(p1, . . . , pk)× (A+(M)×M+).

(p1, . . . , pk, a) 7→ (D(p1, . . . , pk), a) 7→ (D(p1, . . . , pk), (ā,m))

We build the equivariant homotopy first for 0-cells in A+\\A+ and then inductively, showing if

we have built an equivariant homotopy on the (k−1)-skeleton we can extend it to the k-cells.

Let fk be the restriction of the map f to the k-cells of A+ \\A+ and similarly for gk. Then we

aim to define an equivariant homotopy between f0 and g0. (A+\\A+)0
∼= (A+(M)×M+) under

the above decomposition. Consider f0(α) and g0(α) in A+ \\A+ for some α in A+(M). Then

since A+ \\A+ ' ∗ by 4.5.18 it follows that there exists a path between f0(α) and g0(α): call

this h0(α, t) for t ∈ [0, 1]. Extend this homotopy to all 0-cells by letting h0(αm, t) = h0(α, t)·m
for all m in M+. Then h0(αm, 0) = h0(α, 0) · m = f0(α) · m = f0(αm) and similarly

h0(αm, 1) = h0(α, 1) · m = g0(α) · m = g0(αm), since f0 and g0 are M+ equivariant. The

homotopy h0(x, t) is M+ equivariant, since h0(x, t) · µ = h0(x̄m, t) · µ = h0(x̄, t) · mµ =

h0(x̄mµ, t) = h0(xµ, t) when the decomposition of x is given by x = x̄m for some x̄ in A+(M)

and m in M+.

We now assume that we have built the equivariant homotopy hk−1(x, t) on the (k −
1)-skeleton and show that we extend it to the k-cells. The homotopy hk−1(x, t) satisfies

hk−1(x, 0) = fk−1(x) and hk−1(x, 1) = gk−1(x). Consider the k-cell D(p1, . . . , pk) · α for some

α in A+(M). Then its boundary consists of (k − 1)-cells and it follows that hk−1 defines a

homotopy

(∂(D(p1, . . . , pk)) · α)× I → A+ \\A+

and the maps fk and gk also define maps

fk : ((D(p1, . . . , pk)) · α)× {0} → A+ \\A+

gk : ((D(p1, . . . , pk)) · α)× {1} → A+ \\A+.

The union of these three maps gives a map from the boundary of (D(p1, . . . , pk) · α) × I to

A+ \\A+, but this boundary is a k-sphere and so, since A+ \\A+ is contractible the k-sphere

bounds a (k+1)-disk. We can compatibly extend the map over this disk to create the required

homotopy

hk : (D(p1, . . . , pk) · α)× I → A+ \\A+

which agrees on the boundary with the three maps above. Now define hk on any k-cell

D(p1, . . . , pk) · αm by letting hk(x ·m, t) = hk(x, t) ·m for x in D(p1, . . . , pk) · α. Then hk is

M+ equivariant by construction, and satisfies hk(x, 0) = fk and hk(x, 1) = gk by construction

and the fact that both fk and gk are M+ equivariant. �

Definition 4.5.22. Given a monoid M and two submonoids N1 and N2 we can define

the double homotopy quotient N1 \\ M // N2 to be the realisation of the bi-semi-simplicial
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set given by taking two simplicial directions relating to bar constructions B•(∗, N1,M) and

B•(M,N2, ∗). The p, q level of the associated bi-semi-simplicial set X•• has simplices

Xp,q = Np
1 ×M ×N

q
2

and face maps inherited from B•(∗, N1,M) in the p direction (∂p,•) and B•(M,N2, ∗) in the q

direction (∂•,q). An element in the p, q level is given by [n1, . . . np]m[n′1, . . . , n
′
q] with ni in N1

and n′j in N2 for 1 ≤ i ≤ p and 1 ≤ j ≤ q. We note that the face maps on the left and right

commute, since the only maps which act on the same coordinates are ∂p,• in the p direction

and ∂•,1 in the q direction and these commute as follows:

∂p,•(∂•,1([n1, . . . np]m[n′1, . . . , n
′
q])) = ∂p,•([n1, . . . np]mn

′
1[n′2, . . . , n

′
q])

= [n1, . . . , np−1]npmn
′
1[n′2, . . . , n

′
q]

= ∂•,1(∂p,•([n1, . . . np]m[n′1, . . . , n
′
q])).



CHAPTER 5

Background: Homological stability

5.1. Definition and examples

Definition 5.1.1. A family of groups or monoids

G1 → G2 → · · · → Gn → · · ·

is said to satisfy homological stability if the induced maps on homology

Hi(Gn)→ Hi(Gn+1)

are isomorphisms for n sufficiently large compared to i.

Homological stability has been proved in a variety of cases e.g. for the symmetric groups,

braid groups, general linear groups and mapping class groups of surfaces. We will now focus

on some of these examples in detail.

Example 5.1.2. The sequence of symmetric groups Sn satisfies homological stability, as

first proved by Nakaoka [39]. There is a sequence of groups and inclusions:

S1 ↪→ S2 ↪→ · · · ↪→ Sn ↪→ · · ·

where the inclusion Sn ↪→ Sn+1 is given by extending a permutation of n elements to a

permutation of (n+ 1) elements by fixing the last element. Then homological stability:

Hi(Sn)
∼=−→ Hi(Sn+1)

holds in the range 2i ≤ n.

Example 5.1.3. For the braid group on n strands, Bn, we have a sequence of groups:

B1 ↪→ B2 ↪→ . . . ↪→ Bn ↪→ . . .

where the inclusion Bn ↪→ Bn+1 is given by adding a strand in the (n+1)st position which does

not entangle with the first n strands. The sequence of braid groups Bn satisfies homological

stability, as first proved by Arnol’d and published by Brieskorn [10]. For this sequence we

have:

Hi(Bn)
∼=−→ Hi(Bn+1)

holds in the range 2i ≤ n.

115
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5.2. Homological stability for Coxeter groups

This section follows work of Hepworth [31], which inspired the project which comprises

the next chapter of this thesis.

Hepworth proves homological stability for families of Coxeter groups for which the se-

quence of groups and inclusions is constructed as follows. The first group in the sequence, W1

is given by any Coxeter diagram DW1 , and a vertex of this diagram, i.e. an s1 in S, is chosen:

s1

the next group in the sequence, W2 is built by adding a generator s2 such that m(s1, s2) = 3

and s2 commutes with all other generators of W1, i.e. the Coxeter diagram has the form

s1 s2

Since the diagram DW1 is a subdiagram of DW2 it follows that W1 is a subgroup of W2. We

continue in this sense, at each stage progressing from Wi to Wi+1 by adding a generator si+1

satisfying m(si, si+1) = 3 and si+1 commutes with all other generators of Wi. At each stage

the Coxeter diagram DWi is a full subdiagram of DWi+1 and hence Wi is a subgroup Wi+1, by

Proposition 1.2.5. Therefore the sequence {Wn} has the following form:

W1

s1

� � //

W2

s1 s2

� � // · · · �
� //

s1 s2 sn−1 sn

Wn

� � // · · ·

We note here that the Coxeter diagram DWn has the diagram An as a subdiagram, and so

the finite Coxeter group W (An) is a subgroup of Wn. Recall that W (An) corresponds to the

symmetric group Sn+1. Therefore each group in the sequence has a symmetric group as a

subgroup, and the ‘dimension’, or the number of generators, in the symmetric group increases

as one moves up the sequence. Hepworth’s result is as follows:

Theorem 5.2.1 (Hepworth [31, Main Theorem]). The above sequence of groups and in-

clusions

W1 ↪→W2 ↪→ · · · ↪→Wn ↪→ · · ·
satisfies homological stability, that is the induced map on homology

H∗(BWn−1)→ H∗(BWn)

is an isomorphism for 2∗ ≤ n. Here homology is taken with arbitrary constant coefficients.

Three of the families of finite Coxeter groups from Theorem 1.1.12 satisfy that their

diagrams are of the form of Hepworth’s construction. These are:
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• W (An), or the symmetric group Sn+1, which relates to the sequence {Wn} by setting

Wi = W (Ai). In this case the starting diagram DW1 is given by the single vertex s1,

or the diagram A1. This gives homological stability for the symmetric groups, as in

Example 5.1.2.

• W (Bn), or the signed symmetric groups Z2 o Sn relates to the sequence {Wn} by

setting Wi = W (Bi+1). In this case the starting diagram DW1 is given by the

diagram B2, as follows:

W1

s1

=

B2

s1

4

Homological stability was proved for wreath products by Hatcher and Wahl in [30,

Proposition 1.6].

• W (Dn), or the index two subgroup of W (Bn), which relates to the sequence {Wn}
by setting Wi = W (Di+2). In this case the starting diagram DW1 is given by the

diagram D3, as follows:

W1

s1

=

D3

s1

This was a previously unknown homological stability result.

Remark 5.2.2. Since the Coxeter diagramDW1 can be any diagram with a finite number of

vertices, Hepworth’s result also proves homological stability for sequences of infinite Coxeter

groups, and for cases when the sequence is neither comprised fully of finite nor of infinite

groups. For example, in the case that the starting diagram is as follows:

W1

s1

=
s1

A4

Then the first five groups in the sequence are finite and the sequence takes the form

W (A4) ↪→W (D5) ↪→W (E6) ↪→W (E7) ↪→W (E8) ↪→ · · ·

however after the fifth group, the groups in the sequence become infinite Coxeter groups.

5.3. Homological stability for Artin groups: literature review

Inspired by the work of Hepworth described in the previous section, we aim to prove a

homological stability result for the sequence of Artin groups {AWn} corresponding to the
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sequence of Coxeter groups {Wn} of Hepworth’s paper. There are a few known cases of

stability for sequences of this form, reinforcing the hypothesis that a general statement such

as Hepworth’s will hold. All of the following examples were proved by Arnol’d, by computing

the full (co)homology of the groups in question, using the associated hyperplane complement.

The results and proofs are in the paper Sur les groupes des tresses by Brieskorn [10].

• Homological stability holds for the braid groups, by Example 5.1.3. This is the

sequence of Artin groups {AWn} for Wn the symmetric group W (An) = Sn+1.

• Homological stability holds for the sequence of finite type Artin groups {AWn} re-

lating to Wn being the Coxeter group W (Bn+1).

• Homological stability holds for the sequence of finite type Artin groups {AWn} re-

lating to Wn being the Coxeter group W (Dn+2).

These examples are exactly the sequences of finite type Artin groups relating to the three

sequences of finite Coxeter groups known to fit into Hepworth’s result. However Hepworth’s

result is much more general and this is what we aim to prove in the case of Artin groups.

In Second Mod 2 Homology of Artin Groups by Akita and Liu [1], homological stability in

degree two with Z2 coefficients was proved, for the sequence of Artin groups {AWn} relating to

Hepworth’s sequence {Wn}. They proved this by showing the mod 2 homology in degree two

of any finite rank Artin group was isomorphic to the mod 2 homology of the corresponding

Coxeter group. Therefore Howlett’s Theorem or Theorem A gives H2(A;Z2), and they observe

that for the sequence of diagrams relating to Hepworth’s, this formula stabilises.



CHAPTER 6

Results: Homological stability for Artin monoids

In this chapter we prove a homological stability result for families of Artin monoids corre-

sponding to Hepworth’s families of Coxeter groups. The key step in the proof of the theorem

is to show that a certain family of semi-simplicial spaces on which the monoids act is highly

connected. To define this family of spaces and prove the related connectivity requires the

theory of the previous chapter.

6.1. Discussion of results

This chapter concerns the homological stability behaviour of families of Artin groups. In

particular we consider sequences of Artin groups which have the braid group as a subgroup.

The sequence of groups and inclusions relates to the sequence of Coxeter groups {Wn}n≥1

introduced by Hepworth [31], and described in Section 5.2. We let the Artin group AWn

corresponding to the Coxeter group Wn be denoted An, for ease of notation the sequence of

corresponding diagrams is

A1

σ1

� � //

A2

σ1 σ2

� � // · · · �
� //

σ1 σ2 σn−1 σn

An

� � // · · ·

where the grey box indicates a diagram of arbitrary shape, meaning that the sequence begins

with an arbitrary Artin group with finite generating set. As in the Coxeter group setting,

this gives a sequence of groups and inclusions

A1 ↪→ A2 ↪→ · · · ↪→ An ↪→ · · · .

The finite type examples of this sequence were discussed in Section 5.3 and are known

to satisfy homological stability. The results in this section relate to the more general set-

ting, where A1 can correspond to any Coxeter diagram, but are stated and proved for the

corresponding Artin monoids. The results are then related to Artin groups via the K(π, 1)

conjecture, discussed in Section 3.2.

Recall that the Artin monoid corresponding to An is denoted A+
n . The inclusion map

between the monoids is denoted s and called the stabilisation map. This gives the following

119
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sequence of monoids, studied in this chapter.

A+
1

s
↪→ A+

2

s
↪→ · · · s

↪→ A+
n

s
↪→ · · ·

Theorem 6.1.1. The sequence of Artin monoids

A+
1 ↪→ A+

2 ↪→ · · · ↪→ A+
n ↪→ · · ·

satisfies homological stability. That is, the induced map on homology

H∗(BA
+
n−1)

s∗→ H∗(BA
+
n )

is an isomorphism when ∗ < n
2 and a surjection when ∗ = n

2 . Here homology is taken with

arbitrary constant coefficients.

Recall from Theorem 4.4.1 that the K(π, 1) conjecture holds precisely when the classifying

spaces of the Artin group and monoid are homotopy equivalent. Hence, if the conjecture holds,

Theorem 6.1.1 implies homological stability even for the groups.

Corollary 6.1.2. When the K(π, 1) conjecture holds for all An, the sequence of Artin

groups

A1 ↪→ A2 ↪→ · · · ↪→ An ↪→ · · ·

satisfies homological stability. That is, the induced map on homology

H∗(BAn−1)→ H∗(BAn)

is an isomorphism when ∗ < n
2 and a surjection when ∗ = n

2 . Here homology is taken with

arbitrary constant coefficients.

Proof. We have by Theorem 4.4.1 that the K(π, 1) conjecture holds if and only if BA+ '
BA via the natural map. Applying this homotopy equivalence to Theorem 6.1.1 yields the

Corollary. �

This in turn reproves the homological stability results in Section 5.3.

Corollary 6.1.3. Homological stability holds for the sequences of Artin groups {An}n≥1

relating to the sequences of finite Coxeter groups W (An), W (Bn+1) and W (Dn+2).

Proof. These three sequences consist of only finite type Artin groups, which satisfy the

K(π, 1) conjecture by Deligne’s Theorem (Theorem 3.2.5). Hence by the previous Corollary,

the sequences of Artin groups satisfy homological stability. �
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6.2. Outline of proof

The key step in the proof of Theorem 6.1.1 is to show that a certain family of semi-

simplicial spaces on which the monoids A+
n act is highly connected. In this proof we build a

semi-simplicial space An• for each monoid in the sequence A+
n such that:

(1) An• is built out of spaces Anp for p ≥ 0

(2) there exist homotopy equivalences Anp ' BA+
n−p−1 for p ≥ 0

(3) there is a map from the geometric realisation of An• to the classifying space BA+
n ,

which we call ‖φ•‖

‖An•‖
‖φ•‖→ BA+

n

(4) ‖φ•‖ is highly connected, i.e. it is an isomorphism on a large range of homotopy

groups.

We will refer to these four points as 1, 2, 3 and 4 throughout this chapter, and address

each point in turn. In this chapter the sections are arranged as follows. Section 6.3 applies

the theory of Section 4.3 in the case of the sequence of monoids we are working with, and

introduces notation used throughout the chapter. Section 6.4 introduces the semi-simplicial

space An• for each monoid in the sequence A+
n and addresses Points 1, 2 and 3. Point 4 is

then the topic of Section 6.5, in which the general method of proof for the high connectivity

argument is introduced before the proof is split into cases which are then proved individually.

Finally the homological stability result follows in Section 6.6.

6.3. Preliminaries concerning the sequence of Artin monoids

Definition 6.3.1. Let A0 be the Artin group corresponding to the Coxeter diagram DW1 ,

but with the vertex s1 and all edges which have vertex s1 at one end removed. We depict the

diagram as follows

A0

σ1

Then A0 ↪→ A1 and we consider the sequence of Artin monoids

(5) A+
0 ↪→ A+

1 ↪→ A+
2 ↪→ · · · ↪→ A+

n ↪→ · · ·

given by the diagrams

A0

σ1

� � //

A1

σ1

� � //

A2

σ1 σ2

� � // · · · �
� //

σ1 σ2 σn−1 σn

An

� � //
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Here we note that for all p, every generator and hence every word in the monoid A+
p commutes

with σj for j ≥ p+ 1.

We now apply the theory developed in Section 4.3 to the specific case of A+
n a monoid in

the sequence from Equation (5) and a submonoid of A+
n , given by a previous monoid in the

sequence A+
p where p < n. We adopt the following notation:

• Let EndMonp(α) = EndMonAp(α) and EndGenp(α) = EndGenAp(α) for α in A+
n ,

as defined in Definition 4.2.9. Then

EndGenp(α) = {σs | s ∈ SA+
p
, σs �R α}

EndMonp(α) = {β ∈ A+
p | β �R α}.

• Let A+(n; p) be the set A+(M) for A+ = A+
n and M = A+

p . This set is defined in

Definition 4.3.3, and is the set of words in A+
n that do not end in a word from A+

p .

• Let the equivalence class of α in A+
n under the relation ≈ with respect to the sub-

monoid A+
p (defined in Definition 4.3.5) be denoted [α]p as opposed to [α]Ap . Then

[α]p is the equivalence class of α under ≈, which is the equivalence relation generated

by the transitive closure of the relation ∼ on A+
n given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in A+
p .

Then we have from Lemma 4.3.6 that the equivalence classes under ≈ with respect to the

submonoid A+
p are in one to one correspondence with the set A+(n; p). Recall from Remark

4.3.2 that if β is the least common multiple of EndMonp(α) then we define α in A+
n to be the

word such that α = αβ. Then A+(n; p) is the set of all such α and for all α1 and α2 in A+
n :

[α1]p = [α2]p ⇐⇒ α1 = α2.

We also have from Proposition 4.3.7 the set decomposition

A+
n
∼= A+(n; p)×A+

p for all p < n.

6.4. The semi-simplicial space An•
We now build the semi-simplicial space An• as required in Section 6.2 Point 1: An• is built

out of spaces Anp for p ≥ 0.

Definition 6.4.1. We define the semi-simplicial set Cn• by setting levels Cnp for 0 ≤ p ≤
(n − 1) to be the equivalence classes A+

n / ≈ where the equivalence relation is taken with

respect to A+
n−p−1, i.e. ≈ is the transitive closure of the relation ∼ on A+

n given by

α1 ∼ α2 ⇐⇒ α1β1 = α2β2 for some β1 and β2 in A+
n−p−1.

Face maps are given by

∂pk : Cnp → Cnp−1

∂pk : [α]n−p−1 7→ [α(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p.



6.4. THE SEMI-SIMPLICIAL SPACE An• 123

These face maps are well defined, if [α]n−p−1 = [β]n−p−1 then α = β̄ where the bar is taken

with respect to A+
n−p−1. Set α = γ (recall the definition of α from Remark 4.3.2). It follows

there exist some a and b in A+
n−p−1 such that α = γa and β = γb. Then since a and b only

contain letters in A+
n−p−1 and all of these letters commute with (σn−p+kσn−p+k−1 . . . σn−p+1)

it follows that a and b letterwise commute with the face map. Taking the equivalence classes

with respect to A+
n−p therefore gives

[α(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [(γa)(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)a]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

and similarly

[β(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [(γb)(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)b]n−p

= [γ(σn−p+kσn−p+k−1 . . . σn−p+1)]n−p

therefore α and β map to the same equivalence class under the face map, and so the face maps

are well defined. The motivation for this choice of face maps follows Hepworth, as discussed

in [31, Example 35].

Lemma 6.4.2. The face maps ∂pk on Cn• defined in Definition 6.4.1 satisfy the simplicial

identities, that is, for 0 ≤ i < j ≤ p:

∂p−1
i ∂pj = ∂p−1

j−1∂
p
i

Proof. For ease of notation in the proof, we denote (n−p) as r. Then the left hand side

acts as follows

Cnp
∂pj // Cnp−1

∂p−1
i // Cnp−2

[α]r−1
� ∂pj // [α(σr+j . . . σr+1)]r

� ∂p−1
i // [α(σr+j . . . σr+1)(σr+i+1 . . . σr+2)]r+1.

In comparison the right hand side acts as follows

Cnp
∂pi // Cnp−1

∂p−1
j−1 // Cnp−2

[α]r−1
� ∂pi // [α(σr+i . . . σr+1)]r

� ∂
p−1
j−1// [α(σr+i . . . σr+1)(σr+j . . . σr+2)]r+1

Claim: Let x = (σr+j . . . σr+1)(σr+i+1 . . . σr+2) and y = (σr+i . . . σr+1)(σr+j . . . σr+2).

Then x = yσr+1.
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If we prove the claim then it follows that the left hand side is equal to the right hand side

since we are taking the equivalence relation with respect to the submonoid A+
r+1. It therefore

remains to prove the claim, which is pure manipulation of the words in the monoid, using the

braiding relations.

x = (σr+j . . . σr+1)(σr+i+1 . . . σr+2)

= (σr+j . . . σr+i)(σr+i−1 . . . σr+1)(σr+i+1σr+i . . . σr+2)

= (σr+j . . . σr+i+1σr+i)σr+i+1(σr+i−1 . . . σr+1)(σr+i . . . σr+2)

= (σr+j . . . σr+i+2)(σr+i+1σr+iσr+i+1)(σr+i−1 . . . σr+1)(σr+i . . . σr+2)

= (σr+j . . . σr+i+2)(σr+iσr+i+1σr+i)(σr+i−1 . . . σr+1)(σr+i . . . σr+2)

= σr+i(σr+j . . . σr+i+2σr+i+1σr+i)(σr+i−1 . . . σr+1)(σr+i . . . σr+2)

= σr+i(σr+j . . . σr+1)(σr+i . . . σr+2)

= σr+i(σr+j . . . σr+1)(σr+i . . . σr+2)

= σr+iσr+i−1(σr+j . . . σr+1)(σr+i−1 . . . σr+2)

= · · ·
= (σr+iσr+i−1 . . . σr+2)(σr+j . . . σr+2σr+1)(σr+2)

= (σr+iσr+i−1 . . . σr+2)(σr+j . . . σr+3)(σr+2σr+1σr+2)

= (σr+iσr+i−1 . . . σr+2)(σr+j . . . σr+3)(σr+1σr+2σr+1)

= (σr+i . . . σr+2σr+1)(σr+j . . . σr+3)(σr+2σr+1)

= (σr+i . . . σr+2σr+1)(σr+j . . . σr+3σr+2σr+1)

= (σr+i . . . σr+1)(σr+j . . . σr+2)σr+1

= yσr+1.

�

Lemma 6.4.3. The pth level of Cn• satisfies

A+
n // A

+
n−p−1 ' A

+(n;n− p− 1) = Cnp
where A+(n;n−p−1) is a defined at the beginning of this section. The homotopy equivalence

is given by the map defined levelwise on the bar construction by

Bp(A
+
n , A

+
n−p−1, ∗) → A+(n;n− p− 1)

α[m1, . . . ,mp] 7→ α

where α ∈ A+
n , mi ∈ A+

n−p−1 for all i and α = αβ for α ∈ A+(n;n− p− 1) and β ∈ A+
n−p−1.

Proof. This is a direct application of Proposition 4.5.20 and the decomposition A+
n
∼=

A+(n;n− p− 1)×A+
n−p−1. �
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Definition 6.4.4. Let the semi-simplicial space An• be the semi-simplicial space with pth

level the homotopy quotient Anp = A+
n \\ Cnp , where the action of A+

n on A+(n;n − p − 1) is

given by

a · [α]n−p−1 = [aα]n−p−1 for a, α ∈ A+
n .

Then An• is given by:

A+
n \\ Cnn−1

�� ��
···
�� ��

Ann−1

A+
n \\ Cnn−2

�� ��
···
�� ��

Ann−2

A+
n \\ Cnn−3

�� �� ··· �� ��

Ann−3

...

���� ��

...

A+
n \\ Cn1
�� ��

An1

A+
n \\ Cn0 An0

where face maps are denoted by ∂pk for 0 ≤ k ≤ p

∂pk : Anp → Anp−1

∂pk : A+
n \\ Cnp → A+

n \\ Cnp−1

and ∂pk acts as the face map ∂pk from 6.4.1 on the Cnp factor of each simplex in the homotopy

quotient, and as the identity on the other factors. The set of j-simplices in A+
n \\ Cnp is given

by (A+
n )j × Cnp and an element in this set is given by [a1, . . . , aj ][α]n−p−1 where the ai and α

are in A+
n . Then the map ∂pk acts on this simplex as

∂pk([a1, . . . , aj ][α]n−p−1) 7→ [a1, . . . , aj ][α(σn−p+kσn−p+k−1 . . . , σn−p+1)]n−p

and since the multiplication by (σn−p+kσn−p+k−1 . . . σn−p+1) is on the right it follows that ∂pk
commutes with all face maps of the bar construction B•(∗, A+

n , Cnp ) for each k. Therefore the

definition of ∂pk on the simplicial level gives a map on the homotopy quotient A+
n \\ Cnp .

Lemma 6.4.5. The face maps ∂pk on An• defined in Definition 6.4.4 satisfy the simplicial

identities, that is for 0 ≤ i < j ≤ p:

∂p−1
i ∂pj = ∂p−1

j−1∂
p
i .

Proof. This proof follows directly from the fact that the simplicial identities are satisfied

for Cn• (Lemma 6.4.2), since the face maps for An• are defined via the maps for Cn• . �
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To address Point 2: there exist homotopy equivalences Anp ' BA+
n−p−1 for p ≥ 0, in

Section 6.2, we prove the following lemma.

Lemma 6.4.6. The pth level of the space An• satisfies

Anp ' A+
n \\A+

n // A
+
n−p−1 ' BA

+
n−p−1

where the homotopy equivalence from the central term to the left is given by the realisation of

the levelwise map on (j, k)-simplices:

(A+
n \\A+

n // A
+
n−p−1)(j,k) → (A+

n \\ Cnp )j

[a1, . . . , aj ]α[a′1, . . . , a
′
k] 7→ [a1, . . . , aj ]α

and the second homotopy equivalence is given by the levelwise projection of the (j, k)-simplices

of the double homotopy quotient map to the k-simplices of the single homotopy quotient:

(A+
n \\A+

n // A
+
n−p−1)(j,k) → (∗ // A+

n−p−1)k

[a1, . . . , aj ]α[a′1, . . . , a
′
k] 7→ ∗[a′1, . . . , a′k]

where α and ai are in A+
n , a′i is in A+

n−p−1, and α = αβ for α in A+(n;n− p− 1) and β in

A+
n−p−1.

Proof. From Lemma 6.4.3 Cnp = A+(n;n− p− 1) ' A+
n // A

+
n−p−1, and this induces

Anp = A+
n \\ Cnp ' A+

n \\A+
n // A

+
n−p−1

with the homotopy equivalence given by the required map. We then have the following

Anp ' A+
n \\A+

n // A
+
n−p−1 = (A+

n \\A+
n ) // A+

n−p−1 ' ∗ // A
+
n−p−1 = BA+

n−p−1.

The central equality is due to the face that the double homotopy quotient is the geometric

realisation of a bi-simplicial-space and therefore we can take the realisation in either direction

first. The final homotopy equivalence is given by Lemma 4.5.18, and the map is given by the

projection as required. Finally ∗ // A+
n−p−1 is a model for BA+

n−p−1 by Lemma 4.5.17. �

To address Point 3: there is a map from the geometric realisation of An• to the classifying

space BA+
n , in Section 6.2 we need to define a map ‖φ•‖ as follows

‖An•‖
‖φ•‖→ BA+

n

and Point 4: ‖φ•‖ is highly connected, is the topic of Section 6.5.

Lemma 6.4.7. We have that ‖An•‖ ' A+
n \\ ‖Cn• ‖.

Proof. The face maps in the bar construction B•(∗, A+
n , Cnp ) for the homotopy quotient

in Anp = A+
n \\ Cnp commute with the face maps in Cn• and therefore with the face maps of

An• . Therefore the two simplicial directions create a bi-semi-simplicial set and one can realise
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in either direction first. Realising in the An• direction first, which has face maps induced by

those of Cn• , completes the proof. �

Recall that A+
n \\∗ is a model for BA+

n . We therefore define ‖φ•‖ as a map from A+
n \\‖Cn• ‖

to A+
n \\ ∗.

Definition 6.4.8. Define φ• to be the semi-simplicial map from the bar construction

B•(∗, A+
n , ‖Cn• ‖) to the bar construction B•(∗, A+

n , ∗), defined by collapsing ‖Cn• ‖ to a point:

φp : Bp(∗, A+
n , ‖Cn• ‖) → Bp(∗, A+

n , ∗)
[a1, . . . , ap]a 7→ [a1, . . . , ap]∗

where ai is in A+
n for all i, and a is in ‖Cn• ‖. Then the geometric realisation ‖φ•‖ maps the

homotopy quotient A+
n \\ ‖Cn• ‖ to the homotopy quotient A+

n \\ ∗.

Proposition 6.4.9. If ‖Cn• ‖ is (k − 1)-connected then the map ‖φ•‖ is k-connected.

Proof. From [21, Lemma 2.4] we know that a semi-simplicial map f• : X• → Y• satisfies

that ‖f•‖ is k-connected if fp : Xp → Yp is (k − p) connected for all p ≥ 0. The map ‖φ•‖ is

defined level-wise as the projection

φp : (A+
n )p × ‖Cn• ‖ → (A+

n )p.

Therefore since ‖Cn• ‖ is (k − 1)-connected it follows that φp is k-connected and in particular

it is (k − p)-connected for all p ≥ 0. It follows that the geometric realisation ‖φ•‖ is k-

connected. �

6.5. High connectivity

This section is concerned with the proof of the following theorem

Theorem 6.5.1. The geometric realisation ‖Cn• ‖ of the semi-simplicial set Cn• is (n − 2)

connected for all n, i.e. πi(‖Cn• ‖) = 0 for 0 ≤ i ≤ n− 2.

For the remainder of this chapter, we will refer to the geometric realisation of the semi-

simplicial set as a complex. Note that by this we do not mean simplicial complex.

6.5.2. High connectivity of complex ‖Cn• ‖. There is a specific argument, called a

union of chambers argument that is often used to prove high connectivity of a complex. It

is closely related to the notion of shellability and so we recall the definition of a shellable

complex.

Definition 6.5.3 (see Björner [8]). Let K be a simplicial complex. K is called pure if

the set

T = {σ ∈ K | σ is not properly contained in any other simplex }
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satisfies that all simplices σ in the set T are of the same dimension i.e. K is a union of top

dimensional simplices. A shelling of a pure complex K is then given by a linear ordering

on T such that each σ in T intersects with its predecessors in the ordering at a non-empty

union top dimensional faces, or facets, of σ. For instance if the ordering of T is given by

T = {F0, F1, F2, . . .} then K is shellable if

Fj ∩
j−1⋃
i=0

Fi

is a non-empty union of facets of Fj for all j. A complex K is shellable if it is pure and admits

a shelling.

Lemma 6.5.4. If a complex K is shellable, and its top dimensional simplices are n-

dimensional then it follows that K is (n− 1)-connected.

Proof. Consider a shelling of K given by T = {F0, F1, F2, . . .} for T defined as above.

Then F0 is contractible. We build up K by adding one top dimensional simplex at a time,

with ordering specified by the shelling. At each stage when we add a simplex Fj we have that

the intersection with
⋃j−1
i=0 Fi is a non empty union of facets of Fj . If this intersection is not

the whole boundary of Fj then it follows that the addition of Fj to
⋃j−1
i=0 Fi did not change the

homotopy type, i.e.
⋃j−1
i=0 Fi ' (

⋃j−1
i=0 Fi)∪Fj . If on the other hand the intersection of

⋃j−1
i=0 Fi

is the boundary of Fj , i.e. all the facets of Fj , then the homotopy type may have changed

by wedging with a sphere Sn, as the map ∂Fj to
⋃j−1
i=0 Fiis null-homotopic by induction.

Therefore we can conclude that building up the whole complex K changes the homotopy type

from the original F0 by either no change, or the addition of n-spheres. It follows that K is

(n− 1)-connected. �

A union of chambers argument applied to a complex X also shows that the complex is

highly connected. To follow a union of chambers argument, the complex X must be a union

of top dimensional simplices of dimension n for some n, i.e. the complex must be pure, as in

Definition 6.5.3. The top dimensional simplices are then called chambers. The chambers are

ordered, not in a total order but in batches, or levels, which we denote X(k) for k in N, such

that X =
⋃
k∈NX(k). Let X(≤ r) be X =

⋃r
k=0X(k). We build X up by adding one batch

of chambers at a time, starting at X(0) and adding X(1) to create X(≤ 1), then adding X(2)

to X(≤ 1) to create X(≤ 2) and so on.

Lemma 6.5.5. Let X, X(k) and X(≤ k) be as above, then X is (n − 1)-connected if the

following three conditions hold

(1) X(0) is contractible.

(2) For r ∈ N, all a in X(r + 1) satisfy that a ∩ X(≤ r) is a non-empty union of top

dimensional faces (facets) of a.

(3) If r ∈ N, and a and b in X(r + 1) then a ∩ b lies in X(≤ r).
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Proof. This proof is similar to the proof of Lemma 6.5.4. We build up X by starting

with batch X(0), which by point (1) is contractible. We add batch X(k) to X(≤ k − 1) at

each stage to get X(≤ k). By point (2) and the proof of Lemma 6.5.4 adding each individual

simplex in the batch X(k) either does not change the homotopy type of X(≤ k−1) or changes

it by the addition of an n-sphere only. Point (3) tells us that adding on a whole batch of

simplices at the same time does not change the homotopy type by anything other than if the

addition were of the simplices one at a time. This is because any intersection between the

simplices in a batch X(k), takes places in the previous batches X(≤ k − 1) where we have

already calculated the homotopy.

The diagram below shows a conceptual view of the building up of the complex X, with

the cylinders representing chambers, the colours batches and the overlaps intersections.

X(0)

X(≤ 0)

� � //
X(0)

X(1)

X(≤ 1)

� � //
X(0)

X(1)

X(2)

X(≤ 2)

� � // · · ·

�

In [17], Davis uses a union of chambers argument to prove that the Davis complex ΣW

associated to a Coxeter group is contractible. He does this by showing that the Davis complex

is an example of a basic construction, which satisfies hypotheses such as those in Lemma 6.5.5.

Hepworth’s high connectivity results relating to homological stability for Coxeter groups [31]

also use such an argument. In [40], Paris uses a union of chambers argument to show that the

universal cover of an analogue of the Salvetti complex for certain Artin monoids is contractible.

This proves the K(π, 1) conjecture for finite type Artin groups. In this chapter we use a similar

union of chambers argument to prove high connectivity. Whilst applying the argument in the

case of Artin monoids and the complex we have constructed, numerous technical challenges

arise, leading to the proof being split into many separate cases that each have to be approached

differently.

To prove high connectivity in our set up we use a union of chambers argument applied to

the complex ‖Cn• ‖. We filter the top dimensional simplices by the natural numbers as follows:

Definition 6.5.6. For k in N we define Cn(k) as follows:

Cn(k) =
⋃

α∈A+
n ,

`(α)≤k

[[α]]0
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Where [[α]]0 is the (n − 1) simplex in ‖Cn• ‖ represented by [α]0 in Cnn−1. Then ‖Cn• ‖ is given

by limk→∞ Cn(k).

Remark 6.5.7. Note that every simplex in ‖Cn• ‖ arises as a face of some [[α]]0, since smaller

simplices are represented by some [[τ ]]k for k > 0 and this is a face of [[τ ]]0. In the language of

Definition 6.5.3 ‖Cn• ‖ is pure.

The union of chambers argument relies on the following two steps:

(A) If `(α) = k + 1 then [[α]]0 ∩ Cn(k) is a non-empty union of top dimensional faces of [[α]]0.

(B) If `(α) = `(β) = k + 1 then [[α]]0 ∩ [[β]]0 ⊆ Cn(k).

which correspond to conditions (2) and (3) in Lemma 6.5.5.

Proposition 6.5.8. If points (A) and (B) hold then it follows that ‖Cn• ‖ is (n − 2) con-

nected.

Proof. This proof follows from Lemma 6.5.5. We build up ‖Cn• ‖ by increasing k in Cn(k).

We start at Cn(0) = [[e]]0, which is a single simplex and thus contractible, this proves point

(1) in Lemma 6.5.5. At each step we build up from Cn(k) to Cn(k + 1) by adding the set of

simplices represented by words in A+
n of length (k + 1):⋃

α∈A+
n ,

`(α)=k+1

[[α]]0

In the language of Lemma 6.5.5 these are the batches X(k+1) and X(≤ k) is given by Cn(k).

Then point (A) says that when [[α]]0 is added to Cn(k), the intersection is a non-empty union

of facets of [[α]]0. This is precisely point (2) in Lemma 6.5.5, and point (B) is precisely point

(3) in Lemma 6.5.5. Therefore the proof follows from the proof of Lemma 6.5.5. �

6.5.9. Proof of Point A: Facets of [[α]]0. We first focus on the proof of (A), for which

we start with a discussion of the top dimensional faces, or facets of a simplex [[α]]0. Consider

the face maps

∂n−1
q : Cnn−1 → Cnn−2

∂n−1
q : [[α]]0 7→ [[ασ2+q−1 . . . σ2]]1

for 0 ≤ q ≤ n− 1. Here ∂n−1
0 is right multiplication by the identity.

Under these face maps the facets of [[α]]0 are given by

[[α]]1, [[ασ2]]1, [[ασ3σ2]]1, [[ασ4σ3σ2]]1, · · · , [[ασnσn−1 . . . σ3σ2]]1

Proposition 6.5.10. If `(α) = k + 1, at least one of the facets of [[α]]0 lies in Cn(k).

Proof. We must show that at least one facet of [[α]]0 is also a facet of some simplex [[α′]]0,

where `(α′) ≤ k.
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Consider EndGen1(α). If this is non-empty then there exists η with length at least 1 in

A+
1 such that α = α′η. It follows that [[α]]1 = [[α′η]]1 = [[α′]]1. Therefore the facet [[α]]1 is also

a facet of [[α′]]0 and since η had length at least 1 it follows `(α′) < `(α) = k + 1 and so [[α′]]0
is in Cn(k).

Alternatively if EndGen1(α) = ∅, then since `(α) ≥ 1 it follows that EndGenn(α) 6= ∅. It

follows from these two observations that {σ2, . . . σn} ∩EndGenn(α) 6= ∅. For some 2 ≤ j ≤ n
we therefore have that α = α′σj . Applying the face map ∂nj−2 gives

∂n−1
j−2 ([[α]]0) = [[ασj−1 . . . σ2]]1

= [[α′σjσj−1 . . . σ2]]1

= ∂n−1
j−1 ([[α′]]0)

and as before `(α′) ≤ k. This shows that the facet ∂n−1
j−2 ([[α]]0) is also a facet of [[α′]]0 and is

therefore in Cn(k). �

To complete the proof of (A) we must show that if a lower dimensional face of [[α]]0
intersects Cn(k) then this is contained in a top dimensional face, or facet, that intersects

Cn(k). We first describe a general form for faces of [[α]]0.

6.5.11. Proof of Point A: Low dimensional faces of [[α]]0.

Definition 6.5.12. A face of [[α]]0 is obtained by applying a series of face maps to [[α]]0.

We denote the series of face maps applied by a tuple (∂n−1
i2

, ∂n−2
i3

, . . . , ∂n−r+1
ir

), and we let

aj := σij−1+j . . . σj . That is, the (j−1)st map in the tuple corresponds to right multiplication

by aj . We note here that aj has length ij and ends with the generator σj , unless ij = 0 in

which case aj = e.

∂n−j+1
ij

: Cnn−j+1 → Cnn−j
: [[α]]j−2 7→ [[ασij−1+j . . . σj ]]j−1

= [[αaj ]]j−1.

From now on we assume that the first map in a tuple maps from Cnn−1 to Cnn−2, the second

map from Cnn−2 to Cnn−3 and so on. We therefore dispense of the superscripts in the ∂ notation

for the face maps when we write these tuples.

With the above notation, an (n − p − 1) subsimplex of [[α]]0 occurs when a tuple of face

maps (∂i2 , ∂i3 , . . . , ∂ip+1) is applied to [[α]]0. The image of these maps is then the subsimplex

[[αa2 . . . ap+1]]p with aj defined as in Definition 6.5.12 above.

Lemma 6.5.13. With the above notation, the tuple of face maps (∂ij )
p+1
j=2 can be organised

such that ij+1 ≥ ij for all j, which translates to `(aj+1) ≥ `(aj).

Proof. This is a direct consequence of Lemma 4.5.7. �
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Lemma 6.5.14. The (n − p − 1) subsimplex of [[α]]0 given by (∂i2 , ∂i3 , . . . , ∂ip+1) or alter-

natively [[αa2 . . . ap+1]]p is a subsimplex of the following facets of [[α]]0:

• ∂i2([[α]]0) = [[αa2]]1
• ∂i3+1([[α]]0) = [[αa3σ2]]1
• ∂i4+2([[α]]0) = [[αa4σ3σ2]]1
• . . .

• ∂ip+1+p−1([[α]]0) = [[αap+1σp . . . σ2]]1

In general the face map ∂ij+(j−2) acts on [[α]]0 to give [[αajσj−1 . . . σ2]]1.

Proof. It is enough to show that ∂ij+(j−2) can act as the first face map in the tuple

(∂i2 , ∂i3 , . . . , ∂ip+1) for all j. Recall from Lemma 6.5.13 that in the tuple we have ij+1 ≥ ij for

all j. It therefore follows that using the simplicial identities, the tuple can be rearranged to

(∂ij+(j−2), ∂i2 , ∂i3 , . . . , ∂̂ij , . . . , ∂ip+1). �

For the remainder of this section, let α in A+
n with `(α) = k+1. The aim of this section is

to show that if the (n− p− 1) subsimplex of [[α]]0 given by (∂i2 , ∂i3 , . . . , ∂ip+1) or alternatively

[[αa2 . . . ap+1]]p is in Cn(k) then it follows one of the facets of [[α]]0 from Lemma 6.5.14 is also

in Cn(k). The proof of (A) will then follow.

Definition 6.5.15. If [[αa2 . . . ap+1]]p is in Cn(k) then it is also a (n− p− 1) subsimplex

of a simplex [[β]]0 for some β in A+
n such that `(β) ≤ k. The subsimplex is therefore obtained

from [[β]]0 by applying a tuple of face maps, denote these (∂l2 , ∂l3 , . . . , ∂lp+1) and order as in

Lemma 6.5.13 such that lj+1 ≥ lj for all j. Define bj := σlj−1+j . . . σj and when lj = 0 let

bj = e. Then (∂l2 , ∂l3 , . . . , ∂lp+1) applied to [[β]]0 gives the (n− p− 1) simplex [[βb2 . . . bp+1]]p.

By construction [[βb2 . . . bp+1]]p = [[αa2 . . . ap+1]]p. We recall here that `(aj) = ij and `(bj) = lj .

Lemma 6.5.16. We choose β and bj as defined above, such that
∑p+1

k=2 lk is minimal,

corresponding to b2 . . . bp+1 being of minimal length. This choice of b2 . . . bp+1 then corresponds

to either:

[[αa2 . . . ap+1]]p = [[β]]p that is, lj = 0∀ j
or

`(β) = `(α)− 1 = k.

Proof. Suppose that β and bj are chosen such that
∑p+1

k=2 lk is minimal, and furthermore

suppose that `(β) < `(α) − 1 and
∑p+1

k=2 lk > 0. Then some lk 6= 0: set j to be mini-

mal such that lj 6= 0. Then bj = σlj−1+j . . . σj 6= e and [[βb2 . . . bp+1]]p = [[βbj . . . bp+1]]p =

[[βσlj−1+j . . . σjbj+1 . . . bp+1]]p. But this is the tuple of face maps (∂lj−1, ∂lj+1
, . . . , ∂lp+1) ap-

plied to [[βσlj−1+j ]]0. Since `(β) < `(α) − 1 it follows that `(βσlj−1+j) ≤ `(α) − 1 and so

[[βσlj−1+j ]]0 is in Cn(k). However the tuple for βσlj−1+j has the sum of its corresponding lj
less than the original tuple for β. This is a contradiction, as β was chosen to have minimal∑p+1

k=2 lk. Therefore either
∑p+1

k=2 lk = 0, or alternatively `(β) = `(α)− 1. �
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For the remainder of this proof, assume β and bj are chosen such that
∑p+1

k=2 lk is minimal,

so we have

[[βb2 . . . bp+1]]p = [[αa2 . . . ap+1]]p

for either
∑p+1

k=2 lk = 0 or `(β) = `(α)− 1 = k. We use the following notation throughout the

remainder of this chapter.

Definition 6.5.17. Let a := a2 . . . ap+1 and b := b2 . . . bp+1. Note that
∑p+1

k=2 lk = 0

corresponds to b = e. So we have

[[αa]]p = [[βb]]p

and we recall that this is equivalent to αa = βb in A+(n; p). Let γ := αa = βb, and define u

and v in A+
p such that

αa = γu and βb = γv.

We complete the proof of (A) by splitting into three cases:

(i) `(βb) < `(αa)

(ii) `(βb) = `(αa)

(iii) `(βb) > `(αa)

and since multiplication in the Artin monoid corresponds to adding lengths the conditions of

these cases correspond to analogous conditions on the lengths of u and v.

Remark 6.5.18. Note that if
∑p+1

k=2 lk = 0 then b = e, and since `(β) < `(α) it follows we

are therefore in case (i):`(βb) < `(αa).

We prove the three cases one by one in the following subsections. This involves many

technical lemmas, and in particular computation of least common multiples of strings of

words. We therefore include all these technical lemmas on least common multiples in a

separate section and refer to them as required.

6.5.19. Proof of Point A: least common multiple calculations. Recall from Def-

inition 6.5.12 that a face of [[α]]0 is obtained by applying a series of face maps to [[α]]0.

We denote the series of face maps applied by a tuple (∂n−1
i2

, ∂n−2
i3

, . . . , ∂n−r+1
ir

), and we let

aj = σij−1+j . . . σj and when ij = 0 let aj = e. That is, the (j − 1)st map in the tuple

corresponds to right multiplication by aj . We let a = a2 . . . ap+1. Recall also that if [[αa]]p
is in Cn(k) then the subsimplex is also obtained from some [[β]]0 for `(β) ≤ k, by applying a

tuple of face maps (∂l2 , ∂l3 , . . . , ∂lp+1). Recall bj := σlj−1+j . . . σj and when lj = 0 let bj = e.

Let b = b2 . . . bp+1. By construction [[βb]]p = [[αa]]p. Recall from Definition 4.2.8 that for α

and β two words in A+, we denote the least common multiple of α and β (if it exists) by

∆(α, β).

Lemma 6.5.20. With notation as above, ∆(aj+1, σj) = aj+1σjaj+1.

Proof. We must show
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(a) aj+1 �R aj+1σjaj+1 and σj �R aj+1σjaj+1.

(b) if x in A+
n is a common multiple of aj+1 and σj , then aj+1σjaj+1 �R x.

Recall aj+1 := σij+1+j . . . σj+1. Without loss of generality, relabel j = 1 and ij+1 + j = k.

Then aj+1 = σk . . . σ2 and σj = σ1

To prove (a) we note aj+1 �R aj+1σjaj+1 from observation, and also

aj+1σjaj+1 = (σk . . . σ2)σ1(σk . . . σ2)

= ((σkσk−1σk)σk−2 . . . σ2)σ1(σk−1 . . . σ2)

= ((σk−1σkσk−1)σk−2 . . . σ2)σ1(σk−1 . . . σ2)

= (σk−1σk(σk−1σk−2σk−1)σk−3 . . . σ2)σ1(σk−2 . . . σ2)

= (σk−1σk(σk−2σk−1σk−2)σk−3 . . . σ2)σ1(σk−2 . . . σ2)

= · · ·
= (σk−1σkσk−2σk−1 . . . σ2σ3σ2)σ1(σ2)

= (σk−1σkσk−2σk−1 . . . σ2σ3)(σ2σ1σ2)

= (σk−1σkσk−2σk−1 . . . σ2σ3)(σ1σ2σ1)

so σ1 = σj �R aj+1σjaj+1.

To prove (b) we note that aj+1σjaj+1 is a common multiple, and we show by induction

on `(aj+1) that any common multiple x must satisfy aj+1σjaj+1 �R x. When `(aj+1) = 1,

aj+1 = σ2 and we have ∆(σ2, σ1) = σ2σ1σ2 = aj+1σjaj+1. When `(aj+1) = r − 1 for

r ≥ 2, assume that ∆(aj+1, σj) = aj+1σjaj+1 and prove for `(aj+1) = r. Assume x sat-

isfies aj+1 �R x and σj �R x. Since `(aj+1) = r this means aj+1 = σr+1 . . . σ2 and so

σr+1 . . . σ2 �R x which in particular gives σr . . . σ2 �R x. By the inductive hypothesis it

follows that ∆(σr . . . σ2, σ1) = (σr . . . σ2)σ1(σr . . . σ2) and this is in EndMonn(x) by Lemma

4.3.9. Let x = x′(σr . . . σ2)σ1(σr . . . σ2). Then since σr+1 . . . σ2 �R x, by cancellation of

σr . . . σ2 we have that σr+1 � x′(σr . . . σ2)σ1 = x′σr(σr−1 . . . σ2σ1). Since σr+1 letterwise com-

mutes with (σr−1 . . . σ2σ1), from Lemma 4.3.12 σr+1 �R x′σr. From Lemma 4.3.9 it follows

∆(σr+1, σr) = σrσr+1σr �R x′σr. By cancellation of σr this gives x′ = x′′σrσr+1, so

x = (x′)(σr . . . σ2)σ1(σr . . . σ2)

= (x′′σrσr+1)(σr . . . σ2)σ1(σr . . . σ2)

= x′′(σrσr+1σr)(σr−1 . . . σ2)σ1(σr . . . σ2)

= x′′(σr+1σrσr+1)(σr−1 . . . σ2)σ1(σr . . . σ2)

= x′′(σr+1σrσr+1σr−1 . . . σ2)σ1(σr . . . σ2)

= x′′(σr+1σrσr−1 . . . σ2)σ1(σr+1σr . . . σ2)

= x′′aj+1σjaj+1

as required. �
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Lemma 6.5.21. Recall from Lemma 6.5.20 that ∆(aj+1, σj) = aj+1σjaj+1. We have that

aj+1σjaj+1 = âjajaj+1σj

where âj = σij+1+j−1 . . . σij+j and letterwise commutes with a2 . . . aj−1.

Proof. Recall aj+1 := σij+1+j . . . σj+1 and aj := σij−1+j . . . σj . Without loss of gen-

erality, relabel j = 1 and ij+1 + j = k, and ij − 1 + j = l. Then aj+1 = σk . . . σ2 and

σj = σ1, and aj = σl . . . σ1. Note that since ij+1 ≥ ij then k > l. We want to show that

aj+1σjaj+1 = âjajaj+1σj where âj = σk−1 . . . σl+1.

Now recall from the proof of Lemma 6.5.20 that

aj+1σjaj+1 = (σk . . . σ2)σ1(σk . . . σ2)

= · · ·
= (σk−1σkσk−2σk−1 . . . σ2σ3)(σ1σ2σ1).

We now move all generators in this expression as far to left as possible, past all other generators

that they commute with.

aj+1σjaj+1 = (σk−1σkσk−2σk−1 . . . σ2σ3)(σ1σ2σ1)

= σk−1σkσk−2σk−1 . . . σ3σ4σ2(σ3σ1)σ2σ1

= σk−1σkσk−2σk−1 . . . σ3σ4σ2(σ1σ3)σ2σ1

= σk−1σkσk−2σk−1 . . . σ3(σ4σ2σ1)(σ3σ2σ1)

= σk−1σkσk−2σk−1 . . . σ3(σ2σ1σ4)(σ3σ2σ1)

= σk−1σkσk−2σk−1 . . . (σ5σ3σ2σ1)(σ4σ3σ2σ1)

= · · ·
= σk−1(σkσk−2σk−3 . . . σ2σ1)(σk−1σk−2 . . . σ2σ1)

= σk−1(σk−2σk−3 . . . σ2σ1σk)(σk−1σk−2 . . . σ2σ1)

= (σk−1σk−2σk−3 . . . σ2σ1)(σkσk−1σk−2 . . . σ2σ1)

= ((σk−1σk−2 . . . σl+1)(σl . . . σ2σ1))((σkσk−1σk−2 . . . σ2)σ1)

= (σk−1σk−2 . . . σl+1)(σl . . . σ2σ1)(σkσk−1σk−2 . . . σ2)(σ1)

= (âj)(aj)(aj+1)(σj).

Then âj = σk−1 . . . σl+1 where l is the maximal index of a generator appearing in aj . Since

ij ≥ ij−1 it follows that l−1 is the maximal index of a generator appearing in aj−1 and hence

in the string a2 . . . aj−1. Therefore âj letterwise commutes with a2 . . . aj−1 since the indices

of the generators in each word pairwise differ by at least two.
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�

Definition 6.5.22. Recall the definition of aj and bj for 2 ≤ j ≤ p + 1. Define cj as

follows

cj =

{
aj if `(aj) ≥ `(bj)
bj if `(aj) < `(bj)

for 2 ≤ j ≤ p+ 1. Define c := c2 . . . cp+1.

Lemma 6.5.23. With c as defined in 6.5.22 and a and b as defined in 6.5.17 we have

c = ∆(a, b).

Proof. We must prove that

(a) a �R c and b �R c, i.e. there exist a′ and b′ such that c = a′a = b′b

(b) if x in A+
n is a common multiple of a and b, then c �R x.

To prove (a), we show that c = a′a, and the proof that c = b′b is symmetric. We have that

cj = a′jaj where a′j =

{
e if `(aj) ≥ `(bj)
σlj+j−1 . . . σij+j if `(aj) < `(bj)

The smallest generator index in a′j is (ij + j) and the largest generator index in a2 . . . aj−1 is

(ij−1 + (j − 1)− 1). Therefore, since | (ij + j)− (ij−1 + (j − 1)− 1) |=| (ij − ij−1) + 2) |≥ 2,

since ij ≥ ij−1, a′j letterwise commutes with a2 . . . aj−1. Let a′ = a′2 . . . a
′
p+1. It follows

c = c2 . . . cp+1

= (a′2a2)(a′3a3) . . . (a′p+1ap+1)

= a′2a
′
3a2a3 . . . (a

′
p+1ap+1)

= a′2a
′
3 . . . a

′
p+1a2a3 . . . ap+1

= (a′2a
′
3 . . . a

′
p+1)(a2a3 . . . ap+1)

= a′a

which completes the proof of (a).

To prove (b) assume x is a common multiple of a and b.

Claim: If ck . . . cp+1 �R x for some 2 ≤ k ≤ p+ 1 then x = xkck . . . cp+1 for some xk in A+
n .

We claim that xk satisfies a2 . . . ak−1 �R xk and b2 . . . bk−1 �R xk.
Given the claim, the proof of (b) will follow since a = (a2 . . . ap+1) �R x and b =

(b2 . . . bp+1) �R x implies that cp+1 �R x, so x = xp+1cp+1. But then xp+1 satisfies

a2 . . . ap �R xp+1 and b2 . . . bp �R xp+1 by the claim. In particular this means cp �R xp+1 and

it follows that x = xpcpcp+1. Continuing in this manner we arrive at x = x2(c2 . . . cp+1) = x2c

and so c �R x. It therefore remains to prove the claim.
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Since ck . . . cp+1 = (a′kak) . . . (a
′
p+1ap+1) = (a′k . . . a

′
p+1)(ak . . . ap+1) it follows that

x = xk(ck . . . cp+1)

= xk(a
′
k . . . a

′
p+1)(ak . . . ap+1)

= yk(ak . . . ap+1) for yk = xk(a
′
k . . . a

′
p+1).

Since x is a common multiple of a and b then we also have a = (a2 . . . ap+1) �R x, i.e for some

zk.

x = zk(a2 . . . ap+1)

Therefore by cancellation of (ak . . . ap+1),

yk = zk(a2 . . . ak−1)

By Lemma 4.3.11, ∆((a′k . . . a
′
p+1), (a2 . . . ak−1)) �R yk. Since the two words letterwise com-

mute ∆((a′k . . . a
′
p+1), (a2 . . . ak−1)) = (a2 . . . ak−1)(a′k . . . a

′
p+1) and so

yk = wk(a2 . . . ak−1)(a′k . . . a
′
p+1)

for some wk in A+
n . So we have

x = xk(ck . . . cp+1)

= yk(ak . . . ap+1)

= wk(a2 . . . ak−1)(a′k . . . a
′
p+1)(ak . . . ap+1)

= wk(a2 . . . ak−1)((a′k . . . a
′
p+1)(ak . . . ap+1))

= wk(a2 . . . ak−1)(ck . . . cp+1)

and by cancellation of ck . . . cp+1 on the first and final lines of the above equation, we have

that (a2 . . . ak−1) �R xk as required. The proof for (b2 . . . bk−1) �R xk is symmetrical. This

completes the proof of the Claim and thus of (b). �

6.5.24. Proof of Point A: Proof of case (i):`(βb) < `(αa).

Proposition 6.5.25. Under the hypotheses of case (i), it follows that EndGenp(αa) 6= ∅.

Proof. Recall that for some u and v in A+
p , αa = γu and βb = γv. If `(βb) < `(αa) then

it follows `(γv) < `(γu) and consequently `(v) < `(u), since multiplication in A+
n corresponds

to addition of lengths. Since the inequality is strict, it follows that `(u) 6= 0, i.e. u 6= e. It

follows that since αa = γu, u ∈ EndMonp(αa) so in particular EndGenp(αa) 6= ∅. �

Remark 6.5.26. To prove point (A) in the setting of case (i), it is therefore enough to

prove that if EndGenp(αa) 6= ∅ and [[αa]]p is in Cn(k) that a facet containing [[αa]]p is in Cn(k).

Proposition 6.5.27. If EndGen0(αa) 6= ∅ then the facet [[αa2]]1 containing [[αa]]p is in

Cn(k).
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Proof. Consider τ in EndGen0(αa). Then since the generators S0 of A+
0 commute

with σ2, . . . , σn it follows that τ letterwise commutes (see Definition 4.3.10) with a since

a = a2 . . . ap+1 and therefore a only contains letters in the set of generators {σ2, . . . σn}. We

therefore have that τ and a are both in EndMonn(αa) and they letterwise commute. It

follows from Lemma 4.3.12 that τ is in EndMonn(α), so for some α′ in A+
n , α = α′τ with

`(α′) < `(α).

The facet [[αa2]]1 therefore satisfies

[[αa2]]1 = [[α′τa2]]1 = [[α′a2τ ]]1 = [[α′a2]]1.

Here the final equality is due to α′a2τ = α′a2 where the reduction is taken with respect to

A+
1 (from Lemma 4.3.4). The penultimate equality is due to the fact τ and a2 letterwise

commute. Since `(α′) < `(α), [[α′]]0 is in Cn(k) and [[α′a2]]1 is a facet of [[α′]]0. Therefore

[[αa2]]1 is in Cn(k) and this completes the proof. �

The case where EndGenp(αa) 6= ∅ but EndGen0(αa) = ∅ requires the following technical

lemma.

Lemma 6.5.28. Suppose aj 6= e, then the words aj and aj+1 as defined in Definition

6.5.12 satisfy aj+1σj = ājaj, for some āj in A+
n with `(āj) ≥ 1, since `(aj+1) ≥ `(aj) ≥ 1.

Furthermore āj letterwise commutes with a2 . . . aj−1. Regardless of whether or not aj = e,

aj+1σj corresponds to the face map ∂n−j+1
ij+1+1.

Proof. If aj 6= e then aj+1σj = ājaj . That is

aj+1σj = (σij+1+j . . . σj+1)σj

= (σij+1+j . . . σij+j)(σij+j−1 . . . σj+1)σj

= (σij+1+j . . . σij+j)(σij+j−1 . . . σj+1σj)

= (σij+1+j . . . σij+j)aj

= ājaj

so āj = σij+1+j . . . σij+j . The letters appearing in a2 . . . aj−1 are {σ2, . . . , σij−1+(j−1)−1} and

so to prove that āj letterwise commutes with a2 . . . aj−1 it is enough to show that the set

A = {σij+j , . . . , σij+1+j} pairwise commutes with the set B = {σ2, . . . , σij−1+(j−1)−1}. The

largest index of a generator in B is ij−1 + (j − 1)− 1 and the smallest index of a generator in

A is ij + j so it is enough to show | (ij + j)− (ij−1 + (j− 1)− 1) |=| (ij − ij−1) + 2 |≥ 2. This

holds since ij ≥ ij−1, and so āj and a2 . . . aj−1 letterwise commute. Regardless of whether or

not aj = e, aj+1σj = ājaj = σij+1+j . . . σj corresponds to the face map ∂n−j+1
ij+1+1 as in Definition

6.5.12. �

Proposition 6.5.29. If EndGenp(αa) 6= ∅ but EndGen0(αa) = ∅ then some σj is in

EndGenp(αa) for 1 ≤ j ≤ p. Then the facet [[αajσj−1 . . . σ2]]1 containing [[αa]]p is in Cn(k).
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Proof. If EndGen0(αa) = ∅ and EndGenp(αa) 6= ∅ it follows that {σ1, σ2, . . . σp} ∩
EndGenp(αa) 6= ∅, so some σj is in EndGenp(αa) for 1 ≤ j ≤ p. We have that σj and

a = a2 . . . ap+1 are both in EndMonn(αa). In particular σj and aj+2 . . . ap+1 are both in

EndMonn(αa). Since σj and aj+2 . . . ap+1 letterwise commute we have from Lemma 4.3.12

that σj is in EndMonn(αa2 . . . aj+1). Since aj+1 is also in EndMonn(αa2 . . . aj+1), from

Lemma 4.3.9 we have ∆(aj+1, σj) is in EndMonn(αa2 . . . aj+1). From Lemma 6.5.20 we have

∆(aj+1, σj) = aj+1σjaj+1 so aj+1σjaj+1 is in EndMonn(αa2 . . . aj+1). By cancellation of

aj+1 it follows that aj+1σj is in EndMonn(αa2 . . . aj), so αa2 . . . aj = α′(aj+1σj) for some α′

in A+
n .

Recall Lemma 6.5.28 and split into two cases:

(a) aj 6= e

(b) a2 = · · · = aj = e

For case (a) recall from Lemma 6.5.28 that aj+1σj = ājaj and āj letterwise commutes with

a2 . . . aj−1. Together with αa2 . . . aj = α′(aj+1σj) this gives

αa2 . . . aj = α′(aj+1σj)

= α′(ājaj)

⇒ αa2 . . . aj−1 = α′āj by cancellation of aj

Now α(a2 . . . aj−1) = α′āj and āj letterwise commutes with a2 . . . aj−1. By Lemma 4.3.12 it

follows that āj is in EndMonn(α), that is there exists α′′ in A+
n such that α = α′′āj .

Then the facet [[αajσj−1 . . . σ2]]1 satisfies

[[αajσj−1 . . . σ2]]1

= [[α′′ājajσj−1 . . . σ2]]1

and by Lemma 6.5.28 ājaj is a face map ∂n−j+1
ij+1+1, so ājajσj−1 . . . σ2 is also a face map ∂n−1

ij+1+j−1,

and therefore [[αajσj−1 . . . σ2]]1 is also a facet of [[α′′]]0. Since `(āj) ≥ 1 it follows `(α′′) < `(α)

and so [[αajσj−1 . . . σ2]]1 ∈ Cn(k).

For case (b), a2 = · · · = aj = e gives that aj+1σj is in EndMonn(α), so α = α′aj+1σj for

some α′ in A+
n with `(α′) < `(α). Then the facet [[αajσj−1 . . . σ2]]1 satisfies

[[αajσj−1 . . . σ2]]1

= [[(α′aj+1σj)ajσj−1 . . . σ2]]1

= [[α′(aj+1σjσj−1 . . . σ2)]]1 since aj = e

and as before by Lemma 6.5.28 this is a face of [[α′]]0 which is in Cn(k) as required. �

This concludes the proof of case (i).
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6.5.30. Proof of Point A: Proof of case (ii):`(βb) = `(αa).

Proposition 6.5.31. Recall that for some u and v in A+
p , and γ in A+

n with

EndMonp(γ) = ∅, that αa = γu and βb = γv. If we are in case (ii) then we only need to

consider when αa = βb = γ.

Proof. Case (ii) states that `(βb) = `(αa), which implies that `(γu) = `(γv) which in

turn implies `(u) = `(v) by cancellation. If u 6= e then αa satisfies EndGenp(αa) 6= ∅. By

Remark 6.5.26 it was under this hypothesis that we proved case (i), i.e. if this holds then we

have proved in the proof of case (i) that a facet containing [[αa]]p lies in Cn(k). Therefore

we can assume u = e, which implies v = e since they have the same length. Therefore

αa = βb = γ. �

Recall the definition of cj as in Definition 6.5.22:

cj =

{
aj if `(aj) ≥ `(bj)
bj if `(aj) < `(bj)

for 2 ≤ j ≤ p + 1. Recall c = c2 . . . cp+1. Recall that since `(β) < `(α) then in case (ii):

`(βb) = `(αa) that it follows `(b) > `(a).

Proposition 6.5.32. With the notation as above, there exists at least one j for which cj =

bj 6= aj. Consider the maximum j for which cj = bj 6= aj. Then the facet [[αajσj−1 . . . σ2]]1 of

[[α]]0 containing [[αa]]p is in Cn(k).

Proof. Recall c = a′a = b′b where a′ = a′2 . . . a
′
p+1 and b′ = b′2 . . . b

′
p+1 as defined in

the proof of Lemma 6.5.23. We fist prove the existence of j in the statement. Note since

`(β) < `(α) it follows that b 6= e and so from Lemma 6.5.16 it follows that `(β) = `(α) − 1

which gives `(b) = `(a) + 1. Putting this together we get c = a′a = b′b and `(b) = `(a) + 1,

which gives `(a′) = `(b′) + 1 and in particular `(a′) ≥ 1. It follows that at least one a′j 6= e

i.e. cj = bj 6= aj .

Recall also that αa = βb = γ from Proposition 6.5.31. Therefore a and b are in

EndMonn(αa) and it follows from Lemma 4.3.9 that ∆(a, b) is in EndMonn(αa). From

Lemma 6.5.23 ∆(a, b) = c so it follows that c is in EndMonn(αa) i.e. we have for some α′ in

A+
n with `(α′) < `(α) that

αa = α′(c) = α′(a′a).

By cancellation of a we have α = α′a′.
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Consider the maximal j for which cj = bj 6= aj . Then a′j+1 = · · · = a′p+1 = e, i.e. a′ =

a′2 . . . a
′
j . It follows that the facet [[αajσj−1 . . . σ2]]1 satisfies

[[(α)ajσj−1 . . . σ2]]1 = [[(α′a′)ajσj−1 . . . σ2]]1

= [[(α′a′2 . . . a
′
j)ajσj−1 . . . σ2]]1

= [[α′a′2 . . . (a
′
jaj)σj−1 . . . σ2]]1

= [[α′a′2 . . . (cj)σj−1 . . . σ2]]1

= [[α′a′2 . . . a
′
j−1(bj)σj−1 . . . σ2]]1.

Post multiplication by bjσj−1 . . . σ2 corresponds to the face map ∂n−1
lj+j−2 (recall `(bj) = lj).

Therefore [[αajσj−1 . . . σ2]]1 is a facet of [[α′a′2 . . . a
′
j−1]]0 and we have that `(α′a′2 . . . a

′
j−1) <

`(α) since α = α′a′2 . . . a
′
j and `(a′j) ≥ 1 (cj = bj = a′jaj 6= aj). Therefore [[αajσj−1 . . . σ2]]1 is

in Cn(k). �

6.5.33. Proof of Point A: Proof of case (iii): `(βb) > `(αa).

Proposition 6.5.34. Recall that for some u and v in A+
p , and γ in A+

n with

EndMonp(γ) = ∅, that αa = γu and βb = γv. If we are in case (iii) then b 6= e. Furthermore,

we only need to consider the case when γ = αa so βb = γv = αav. In this case it follows

EndGenp(βb) 6= ∅.

Proof. Case (iii) states that `(βb) > `(αa), and note that this can only happen when

b 6= e since `(β) < `(α). Recall this implies `(β) = `(α)− 1 from Lemma 6.5.16. If u 6= e then

αa satisfies EndGenp(αa) 6= ∅. By Remark 6.5.26 it was under this hypothesis that we proved

case (i), i.e. if this holds then we have proved in the proof of case (i) that a facet containing

[[αa]]p lies in Cn(k). Therefore we can assume u = e. Then αa = γ and it follows that

βb = γv = αav. Since `(βb) > `(αa) it follows `(v) ≥ 1 and therefore EndGenp(βb) 6= ∅. �

Proposition 6.5.35. If EndGen0(βb) 6= ∅, this contradicts the choice of b, i.e. we chose

b such that
∑p+1

k=2 lk was minimal, as in Lemma 6.5.16.

Proof. Let τ in EndGen0(βb). Then since τ letterwise commutes with b2 . . . bp+1 it

follows that τ is in EndGen0(β) from Lemma 4.3.12. Then β = β′τ for some β′ in A+
n with

`(β′) < `(β). Then

[[βb]]p = [[(β′τ)b]]p

= [[β′τb]]p

= [[β′bτ ]]p

= [[β′b]]p

which contradicts our choice of b, since β′ can be enlarged to `(α)−1, by including the leftmost

generator from b, and this would reduce the length of b. �
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Proposition 6.5.36. If σ1 is in EndGenp(βb) 6= ∅, this contradicts the choice of b, i.e.

we chose b such that
∑p+1

k=2 lk was minimal, as in Lemma 6.5.16.

Proof. If σ1 is in EndGenp(βb), then since σ1 letterwise commutes with b3 . . . bp+1 it

follows that σ1 is in EndGenp(βb2) by Lemma 4.3.12. From Lemma 6.5.20, ∆(σ1, b2) = b2σ1b2
and by Lemma 4.3.11 this is in EndMonn(βb2), giving by cancellation of b2 that b2σ1 is in

EndMonn(β). So β = β′b2σ1 for some β′ in A+
n . Then

[[(β)(b)]]p = [[(β′b2σ1)(b)]]p

= [[(β′b2σ1)(b2 . . . bp+1)]]p

and by Lemma 6.5.21, b2σ1b2 can be written as b̂1σ1b2σ1 where here we note that b1 in the

notation Lemma 6.5.21 acts as σ1 here. So we have

[[(β)(b)]]p = [[(β′b2σ1)(b2 . . . bp+1)]]p

= [[β′(b2σ1b2)(b3 . . . bp+1)]]p

= [[β′(b̂1σ1b2σ1)(b3 . . . bp+1]]p)

= [[β′(b̂1σ1b2)(b3 . . . bp+1)σ1]]p

= [[β′(b̂1σ1)(b2b3 . . . bp+1)σ1]]p

= [[β′b̂1σ1(b)σ1]]p

= [[β′b̂1σ1b]]p

with `(β′b̂σ1) < `(β). This contradicts the choice of b as in Proposition 6.5.35. �

Proposition 6.5.37. If EndGenp(βb) 6= ∅ but EndGen1(βb) = ∅, this contradicts the

choice of b, i.e. we chose b such that
∑p+1

k=2 lk was minimal, as in Lemma 6.5.16.

Proof. If EndGenp(βb) 6= ∅ but EndGen1(βb) = ∅, then σj is in EndGenp(βb) =

EndGenp(β(b2 . . . bp+1)) for some 2 ≤ j ≤ p. Since σj letterwise commutes with bj+2 . . . bp+1

it follows from Lemma 4.3.12 that σj is in EndGenp(βb2 . . . bj+1). From Lemma 6.5.20,

∆(σj , bj+1) = bj+1σjbj+1 and by Lemma 4.3.11 this is in EndMonn(βb2 . . . bj+1), giving by

cancellation of the bj+1 that bj+1σj is in EndMonn(βb2 . . . bj). By Lemma 6.5.28, bj+1σj =

b̄jbj and so by cancellation of bj , b̄j is in EndMonn(βb2 . . . bj−1). From Lemma 4.3.12, since

b̄j letterwise commutes with b2 . . . bj−1 we have b̄j is in EndMonn(β) so β = β′b̄j for some β′
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in A+
n with `(β′) < `(β). Then it follows that

[[(β)b]]p = [[(β′b̄j)(b)]]p

= [[(β′b̄j)(b2 . . . bp+1)]]p

= [[(β′b̄j)(b2 . . . bj−1)bj(bj+1 . . . bp+1)]]p

= [[(β′)(b2 . . . bj−1)(b̄jbj)(bj+1 . . . bp+1)]]p

= [[β′(b2 . . . bj−1)(bj+1σj)(bj+1 . . . bp+1)]]p since b̄jbj = bj+1σj

= [[β′(b2 . . . bj−1)(bj+1σjbj+1)(bj+2 . . . bp+1)]]p

= [[β′(b2 . . . bj−1)(b̂jbjbj+1σj)(bj+2 . . . bp+1)]]p
since bj+1σjbj+1 = b̂jbjbj+1σj

by Lemma 6.5.21

= [[β′(b2 . . . bj−1)(b̂j)(bjbj+1)(σj)(bj+2 . . . bp+1)]]p

= [[β′b̂j(b2 . . . bj−1)(bjbj+1)σj(bj+2 . . . bp+1)]]p

= [[β′b̂j(b2 . . . bj−1bjbj+1bj+2 . . . bp+1)σj ]]p

= [[β′b̂j(b)σj ]]p

= [[β′b̂jb]]p

with `(β′b̂j) < `(β), since `(βb) = `((β′b̂j)bσj), giving `(β) = `((β′b̂j)σj). This contradicts

the choice of b as in Proposition 6.5.35. �

This concludes the proof of case (iii) and hence the proof of Point A.

6.5.38. Proof of Point B. Recall Point B: If `(α) = `(β) = k + 1 then [[α]]0 ∩ [[β]]0 ⊆
Cn(k).

Proposition 6.5.39. Suppose α 6= β in A+
n . If `(α) = `(β) = k + 1 then either [[α]]0 ∩

[[β]]0 = ∅ or [[α]]0 ∩ [[β]]0 ⊆ Cn(k).

Proof. Suppose [[α]]0∩ [[β]]0 6= ∅. Then there exists a and b as defined in Definition 6.5.17

such that [[αa]]p = [[βb]]p for some 1 ≤ p ≤ n − 1. It follows that there exists some γ in A+
n

and u, v in A+
p such that

αa = γu and βb = γv.

Suppose that u 6= e. Then by the proof of Point A case (i) it follows that a facet of [[α]]0
containing [[αa]]p is in Cn(k), as it was under this hypothesis that we proved case (i) (see

Remark 6.5.26). Hence [[αa]]p = [[βb]]p itself is in Cn(k). Similarly if v 6= e then a facet of [[β]]0
containing [[βb]]p = [[αa]]p is in Cn(k), and hence [[βb]]p = [[αa]]p itself is in Cn(k). So we are

left with the case that u = v = e, giving

αa = γ = βb

and since `(α) = `(β) it follows that `(a) = `(b). Since α 6= β it follows a 6= b. Recall

from Definition 6.5.22 there exists c = c2 . . . cp+1 and from Lemma 6.5.23 c = ∆(a, b) and
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c = a′a = b′b. Since `(a) = `(b) then `(a′) = `(b′). Suppose a′ = e, then `(a′) = `(b′) gives

b′ = e and hence c = a = b. But a 6= b so it follows that a′ 6= e and in particular `(a′) ≥ 1.

From Lemma 4.3.11, since a and b are in EndMonn(αa) it follows that ∆(a, b) = c is

in EndMonn(αa), so αa = α′c = α′(a′a) for some α′ in A+
n . By cancellation of a we have

α = α′a′ and `(α′) < `(α). Then

[[αa]]p = [[(α′a′)a]]p

= [[α′c]]p

and [[α′c]]p is in Cn(k) since c represents a series of face maps originating at [[α′]]0, with each

face map given by the map corresponding to left multiplication by cj , which is either the face

map corresponding to aj or bj . �

This completes the proof of B, and hence by Proposition 6.5.8 it follows that ‖Cn• ‖ is

(n− 2) connected.

6.6. Proof of Theorem C

6.6.1. Results on face and stabilisation maps. Recall the definition of the face maps

of An• from Definition 6.4.4:

∂pk : Anp → Anp−1 for 0 ≤ k ≤ p

and given by

∂pk : Anp → Anp−1

∂pk : A+
n \\ Cnp → A+

n \\ Cnp−1

where ∂pk is induced by the face maps of Cn• , which are a composite of right multiplication of

the representative for the equivalence class in Cnp by (σn−p+kσn−p+k−1 . . . σn−p+1), before the

inclusion to the equivalence class in Cnp−1.

Lemma 6.6.2. The face maps ∂pk of An• are all homotopic to the zeroth face map ∂p0 .

Proof. Recall from Lemma 6.4.3 that for each 0 ≤ p ≤ n − 1 there is a homotopy

equivalence

A+
n // A

+
n−p−1 ' A

+(n;n− p− 1) = Cnp ,
with the map defined levelwise on the bar construction by

Bk(A
+
n , A

+
n−p−1, ∗) → A+(n;n− p− 1)

α[m1, . . . ,mk] 7→ α

where α ∈ A+
n , mi ∈ A+

n−p−1 for all i and α = αβ for α ∈ A+(n;n− p− 1) and β ∈ A+
n−p−1.

Define the map

dpk : A+
n \\A+

n // A
+
n−p−1 → A+

n \\A+
n // A

+
n−p
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to be the composition of two maps ιp ◦ d̄pk. The first map

d̄pk : A+
n \\A+

n // A
+
n−p−1 → A+

n \\A+
n // A

+
n−p−1

is given by right multiplication of the central term in the double homotopy quotient by

(σn−p+kσn−p+k−1 . . . σn−p+1). The set of (j, k)-simplices in A+
n \\ A+

n // A
+
n−p−1 is given by

(A+
n )j ×A+

n × (A+
n−p−1)k and an element in this set is given by [a1, . . . , aj ]a[a′1, . . . , a

′
k] where

ai and a are in A+
n and a′i are in A+

n−p−1. The map d̄pk acts on this simplex as

d̄pk([a1, . . . , aj ]a[a′1, . . . , a
′
k]) = [a1, . . . , aj ]a(σn−p+kσn−p+k−1 . . . σn−p+1)[a′1, . . . , a

′
k]

and since (σn−p+kσn−p+k−1 . . . σn−p+1) letterwise commutes with all words in A+
n−p−1, it fol-

lows that d̄pk commutes with all face maps of the bi-semi-simplicial set A+
n \\ A+

n // A
+
n−p−1.

Therefore the map on the central term of each simplex gives a map on the whole bi-semi-

simplicial set, and hence its geometric realisation: the double homotopy quotient A+
n \\A+

n //

A+
n−p−1. The second map ιp is given by the map

ιp : A+
n \\A+

n // A
+
n−p−1 → A+

n \\A+
n // A

+
n−p

induced by the inclusion A+
n−p−1 ↪→ A+

n−p. Note here that dp0 satisfies d̄p0 is the identity map,

and therefore dp0 = ιp. Then the diagram

A+
n \\A+

n // A
+
n−p−1

dpk
��

' // A+
n \\ Cnp

∂pk

��
A+
n \\A+

n // A
+
n−p

' // A+
n \\ Cnp−1

commutes for all p ≥ 0. The map d̄pk restricted to A+
n \\ A+

n is A+
n−p−1-equivariant, and so is

the identity map idA+
n \\A+

n
. Applying Proposition 4.5.21 to these two maps therefore gives an

A+
n−p−1-equivariant homotopy between them. It follows that they induce homotopic maps d̄pk

and idA+
n \\A+

n //A
+
n−p−1

on A+
n \\A+

n //A
+
n−p−1. Applying the inclusion ιp, to both maps and the

homotopy gives a homotopy hk from dpk to ιp. However ιp is precisely the map dp0, and thus hk
is a homotopy from dpk to dp0 for all k. Then the image of hk under the homotopy equivalence

yields a homotopy from ∂pk to the zeroth face map ∂k0 , as required. �

Lemma 6.6.3. Under the homotopy equivalence Anp ' BA+
n−p−1 of Lemma 6.4.6, the

zeroth face map ∂p0 : Anp → Anp−1 is mapped to the map s∗ : BA+
n−p−1 → BA+

n−p induced by

the stabilisation map s : A+
n−p−1 ↪→ A+

n−p.

Proof. From Lemma 6.4.6, Lemma 6.4.3 and the proof of the previous Lemma 6.6.2 we

have the following
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BAn−p−1

s∗

��

oo '
fp

A+
n \\A+

n // A
+
n−p−1

dpk
��

' // A+
n \\ Cnp

∂pk

��
BAn−p oo

'

fp−1
A+
n \\A+

n // A
+
n−p

' // A+
n \\ Cnp−1

where the map from the centre to the left is given on the (j, k)-simplices of the geometric

realisation by

fp(j,k) : (A+
n \\A+

n // A
+
n−p−1)(j,k) → (∗ // A+

n−p−1)k

[a1, . . . , aj ]a[a′1, . . . , a
′
k] 7→ ∗[a′1, . . . , a′k]

where a and ai are in A+
n and a′i is in A+

n−p−1. The map dp0 is the map

dp0 : A+
n \\A+

n // A
+
n−p−1 → A+

n \\A+
n // A

+
n−p

induced by the inclusion A+
n−p−1 ↪→ A+

n−p. Restricting this map to (j, k)-simplices of the

double homotopy quotient gives

(dp0)(j,k) : (A+
n \\A+

n // A
+
n−p−1)(j,k) → (A+

n \\A+
n // A

+
n−p)(j,k)

[a1, . . . , aj ]a[a′1, . . . , a
′
k] 7→ [a1, . . . , aj ]a[a′1, . . . , a

′
k]

where a and ai are in A+
n and a′i is in A+

n−p−1, hence a′i is in A+
n−p. Applying this map before

the homotopy equivalence to the classifying space gives

(A+
n \\A+

n // A
+
n−p−1)(j,k)

fp
(j,k)

��

(dp0)(j,k) // (A+
n \\A+

n // A
+
n−p)(j,k)

fp−1
(j,k)

��
(∗ // A+

n−p−1)k (∗ // A+
n−p)k

BA+
n−p−1

// BA+
n−p

and on a (j, k) simplex this map is given by

[a1, . . . , aj ]a[a′1, . . . , a
′
k]_

fp
(j,k)

��

� (dp0)(j,k) // [a1, . . . , aj ]a[a′1, . . . , a
′
k]_

fp−1
(j,k)

��
∗[a′1, . . . , a′k]

� // ∗[a′1, . . . , a′k].
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We note that the dotted map is precisely the map which defines the natural inclusion

BA+
n−p−1 → BA+

n−p under the identification of ∗ // A+
r with BA+

r for all r. The natural

inclusion is in turn induced by the stabilisation map A+
r

s
↪→ A+

r+1 and so we denote it s∗.

Therefore under the homotopy equivalence between the classifying space and the double ho-

motopy quotient, dp0 is equivalent to s∗. From the proof of the previous lemma, under the

homotopy equivalence between the double homotopy quotient and Cnp for each p, dp0 is the

map induced by ∂p0 and therefore it follows that ∂p0 is equivalent to s∗ under the homotopy

equivalences Cnp ' BA+
n−p−1 for each p. �

6.6.4. Spectral sequence argument. In this section we run first a quadrant spectral

sequence for filtration of ‖An•‖, as in [41, 2 (sSS)]. Recall the four points we proved regarding

‖An•‖:
(1) An• is built out of spaces Anp for p ≥ 0

(2) there exist homotopy equivalences Anp ' BA+
n−p−1 for p ≥ 0

(3) there is a map from the geometric realisation of An• to the classifying space BA+
n ,

which we call ‖φ•‖

‖An•‖
‖φ•‖→ BA+

n

(4) ‖φ•‖ is (n − 1) connected, i.e. it is an isomorphism on homotopy groups πr for

0 ≤ r ≤ (n− 2), and a surjection for r = (n− 1).

The first quadrant spectral sequence of the filtration of ‖An•‖ satisfies

E1
k,l = Hl(Ank)⇒ Hk+l(‖An•‖).

By point (2) the left hand side is given by E1
k,l = Hl(Ank) = Hl(BA

+
n−k−1). The first page of

the spectral sequence is therefore as in Figure 3. By points (3) and (4) the highly connected

map ‖φ•‖ gives that the right hand side satisfies

Hk+l(‖An•‖) ∼= Hk+l(BA
+
n ) when (k + l) < n− 1

Hk+l(‖An•‖) � Hk+l(BA
+
n ) when (k + l) = n− 1.

The differential d1 is given by an alternating sum of face maps in An• . By Corollary 6.6.2 the

face maps are all homotopic to each other and by Lemma 6.6.3 they are all homotopic to the

stabilisation map s∗, via the homotopy equivalence Anp ' BA+
n−p−1. Therefore the alternating

sum of face maps in the differential d1 will cancel out to give the zero map when there are an

even number of terms, and will give the stabilisation map when there are an odd number of

terms, i.e.

d1 : E1
even,l → E1

odd,l odd number of terms, so equals the stabilisation map s

d1 : E1
odd,l → E1

even,l even number of terms, so equals the zero map 0

which gives the E1 page as shown in Figure 4.
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...
...

...
...

3 H3(BA+
n−1)

d1

←− H3(BA+
n−2)

d1

←− H3(BA+
n−3) · · ·

2 H2(BA+
n−1)

d1

←− H2(BA+
n−2)

d1

←− H2(BA+
n−3) · · ·

1 H1(BA+
n−1)

d1

←− H1(BA+
n−2)

d1

←− H1(BA+
n−3) · · ·

0 H0(BA+
n−1)

d1

←− H0(BA+
n−2)

d1

←− H0(BA+
n−3) · · ·

0 1 2

Figure 3. The E1 page of the spectral sequence.

...
...

...
...

3 H3(BA+
n−1)

0←− H3(BA+
n−2)

s∗←− H3(BA+
n−3)

0←− · · ·

2 H2(BA+
n−1)

0←− H2(BA+
n−2)

s∗←− H2(BA+
n−3)

0←− · · ·

1 H1(BA+
n−1)

0←− H1(BA+
n−2)

s∗←− H1(BA+
n−3)

0←− · · ·

0 H0(BA+
n−1)

0←− H0(BA+
n−2)

s∗←− H0(BA+
n−3)

0←− · · ·

0 1 2

Figure 4. The E1 page of the spectral sequence, with differentials filled in.

We proceed by induction, assuming that homological stability holds for previous groups

in the sequence, i.e. the map induced on homology by the stabilisation map s∗

Hi(BA
+
k−1)→ Hi(BA

+
k )

is an isomorphism for k > 2i and is a surjection for k = 2i whenever k < n.
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Here we note that the result holds for the base case n = 1, since we have to check H0(BA+
0 )→

H0(BA+
1 ) is a surjection, which is true since BA+

n is connected for all n, and so in fact

H0(BA+
0 )→ H0(BA+

1 ) is an isomorphism.

Lemma 6.6.5. Under the inductive hypothesis, the spectral sequence satisfies that the E0,l

terms stabilise on the E1 page for 2l ≤ n, i.e.

E1
0,l = E∞0,l when 2l ≤ n.

In particular the d1 differential does not alter these groups, and all possible sources of differ-

entials mapping to E0,l for 2l ≤ n are trivial from the E2 page.

Proof. The d1 differentials are given by either the zero map or the stabilisation map as

shown in Figure 4. The d1 differentials

d1 : E1
0,l → E1

1,l

are given by the zero map, and the E1
−1,l terms are zero, due to the fact that this is a first

quadrant spectral sequence. This gives that the E2
0,l terms are equal to the E1

0,l terms.

To show that the sources of all other differentials to E0,l for 2l ≤ n are zero, we invoke

the inductive hypothesis. This gives that the stabilisation maps, or d1 differentials going from

even to odd columns are isomorphisms on the E1 page, in the interior of the triangle of height

bn2 c and base n, and surjections on the diagonal. Since the d1 differentials going from the odd

to the even columns are zero, it follows that all terms in this triangle are zero on the E2 page,

except the ones on the zero column. These groups are precisely the sources of differentials to

E0,l for 2l ≤ n. �

We are now in a position to prove the desired result.

Theorem 6.6.6. The sequence of monoids A+
n satisfies homological stability, that is

Hi(BA
+
n−1) ∼= Hi(BA

+
n )

when 2i < n, and the map Hi(BA
+
n−1)→ Hi(BA

+
n ) is surjective when 2i = n.

Proof. From Lemma 6.6.5, the spectral sequence satisfies

E∞0,i = E1
0,i = Hi(BA

+
n−1)

when 2i ≤ n. From Proposition 6.4.9 and Theorem 6.5.1

Hi(‖An•‖) ∼= Hi(BA
+
n )

when i ≤ n − 2, and the map Hi(‖An•‖) → Hi(BA
+
n ) is onto when i = n − 1. The spectral

sequence abuts to Hk+l(‖An•‖) and from Lemma 6.6.5 the only non zero groups on the diagonal

E∞k,l when k + l = i are the groups E∞0,i. Putting these results together we get

Hi(BA
+
n−1) = E∞0,i = Hi+0(‖An•‖) ∼= Hi(BA

+
n )
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when both i ≤ n
2 and i ≤ n − 2 are satisfied. When n ≥ 2, i < n

2 implies i ≤ n − 2 and the

case n = 1 was handled as the base case of the inductive hypothesis. Therefore we have that

an isomorphism is induced when 2i < n.

When i ≤ n− 1 and i ≤ n
2 we have

Hi(BA
+
n−1) = E∞0,i = Hi+0(‖An•‖) � Hi(BA

+
n )

and for n ≥ 2, i < n
2 implies i ≤ n − 1. Again the case n = 1 was handled as the base

case of the inductive hypothesis. This gives the required range for the surjection, and hence

completes the proof. �



APPENDIX A

Python calculations

A.1. Code

Below is pseudo-code for the Python code used in Chapter 2, which uses the program

PyCox by Geck [26], and requires the PyCox Python file chv.py. It is followed by some

example calculations, which are referred to in the text. Many thanks to Edmund Howse, who

showed me how to use PyCox and provided example code and computations for me to work

from. The code file can be found on my (current) web-page.

• cosetreps(W, I): Given a Coxeter group W and a subset of its simple reflections I

returns a list of all distinguished right coset representatives of WI in W .

• leftcosetreps(W, I): Given a Coxeter group W and a subset of its simple reflections

I returns a list of all distinguished left coset representatives of WI in W .

• cosetlengths(W, I): Given a Coxeter group W and a subset of its simple reflections

I, returns the length of the distinguished right coset representatives of WI in I as a

list.

• leftDS(W,X): Given a Coxeter group W and X a set of words in W , returns the

left descent set in W for each word in X, in a list.

• intersect(a, b): Returns the intersection of two lists a and b.

• collapse(W, I,w): Given a Coxeter group W , a subset of its simple reflections I and

a simple reflection w in W , computes the following:

– X: distinguished right coset representatives of I in W

– R: reduced words representing right multiplication of the words in list X by w

– Y : the left decent set (generators the word can start in) of the words in list R

– Z: the intersection of each entry of the list Y with I

– L: the length of the coset representatives in list X

– S: the length modulo 2 of the coset representatives in list X

– A: a pair for each non-empty entry of Z, containing the entry of Z and the

corresponding entry of S.

Returns A, the data for the transfer and collapse map on generator corresponding

to w, for subgroup corresponding to I.

151
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• paritycosetreps(W, I): Given a Coxeter group W and a subset of the simple reflec-

tions I, returns the number of distinguished coset representatives which have even

length and the number of distinguished coset representatives which have odd length.

• conjugateandlengths(W, I,w): Given a Coxeter group W , a subset of its simple

reflections I and a simple reflection w, computes the conjugate of w by all distin-

guished coset representatives of WI in W . Returns the conjugates which reduce to a

simple generator of W , and the corresponding length modulo 2 of the conjugator.

Examples

This section consists of examples for all cases in the thesis for which we use the above

Python code.

Example A.1 (For proof of Proposition 2.5.29 and Lemma 2.5.44). This example shows

the code for the transfer and collapse map being used when WT is W (A3):

s t u

and we consider the transfer from H1(WT ;ZT ) = Z3 = 〈α〉 which has generator

α = (1⊗ Γs)− (1⊗ Γt).

When I = {s, t}, our input to the Python module and the corresponding output is

>>> W = coxete r ( ”A” ,3 )

>>> c o l l a p s e (W, [ 0 , 1 ] , 0 )

[ ( [ 0 ] , 0 ) , ( [ 0 ] , 1 ) ]

>>> c o l l a p s e (W, [ 0 , 1 ] , 1 )

[ ( [ 1 ] , 0 ) , ( [ 0 ] , 1 ) ] .

The first line of input sets the Coxeter group to be the inbuilt group W (A3) where generators

s, t, u in the diagram are labelled 0, 1, 2 respectively. The second line of input computes the

transfer and collapse map of (1 ⊗ Γs), specified by the 0 in the third entry (corresponding

to s). This is with respect to the subgroup generated by 0 and 1 (s and t) in the full group

W . The output, [([0], 0), ([0], 1)], is a list of pairs, the first entry in each pair corresponds

to a generator and the second entry to its sign: 1 for negative and 0 for positive. So ([0], 0)

corresponds to +(1 ⊗ Γs) and ([0], 1) to −(1 ⊗ Γs). The third line of input computes the

transfer and collapse map in the same way for (1⊗ Γt), hence the 1 in the third input entry.
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Putting these together we get:

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γs − 1⊗ Γs)− (1⊗ Γt − 1⊗ Γs)

= 1⊗ Γs − 1⊗ Γt

as given in the proof of Proposition 2.5.29.

Example A.2 (For proof of Lemma 2.5.55). We recall the formula for δk(e(Γ)) from

Equation (4).

δk(e(Γ)) =
∑
i≥1

|Γi|>|Γi+1|

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

For the groups W (B3) and W (H3) in Lemma 2.5.55 the δ4(Γs,t,u⊃s) computation is given by:

δ4(Γs,t,u⊃s) =
∑
i=1,2

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′).

We use our ‘conjugateandlengths’ function to compute the distinguished coset representatives

of a 2-generator subgroup WI for I ⊂ {s, t, u} and the conjugates of an element of {s, t, u} by

these representatives. If this conjugate is in {s, t, u}, the length modulo 2 of the conjugator

is recorded. For instance when the group is W (B3)

s
4
t u

and the 2-generator subgroup is generated by I = {s, t} with the element of {s, t, u} being s,

we input the following code:

>>> W = coxete r ( ”B” ,3)

>>> con jugateand lengths (W, [ 0 , 1 ] , 0 )

[ ( [ 0 ] , 0 ) , ( [ 0 ] , 1 ) , ( [ 0 ] , 0 ) , ( [ 0 ] , 1 ) ] .

The output tells us that four coset representatives for WI in W conjugate s to a generator

of B3. The first entry in each pair tells us this generator, and the second entry tells us the

length modulo 2 of the corresponding coset representative. This corresponds to the sign of

the coefficient, since it relies on the length (the sign is +1 if even length and −1 if odd length).

In our example we see that four coset representatives conjugate s to itself, but there are two
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with even length and two with odd length. Therefore upon tensoring with Z over W (B3) in

the proof of Lemma 2.5.55 the terms relating to these coset representatives will cancel out.



APPENDIX B

Calculations for Section 2.5

This Appendix contains proofs and calculations used in Section 2.5. The majority of

these calculations compute twisted homology of finite Coxeter groups, using the De Concini

- Salvetti resolution.

Proof of Example 2.5.5. Here differentials for flags containing only one generator are

computed as in Example 2.5.3 and the other differentials are computed as follows.

We recall the formula for δk(e(Γ)) from Equation (4). The differential δ2(Γs,t) is given by:

δ2(Γs,t) =
∑
i=1

∑
τ=s,t

∑
β∈WΓi\{τ}

Γi

(−1)α(Γ,i,τ,β)βe(Γ′)

=
∑

β∈W t
s,t

(−1)α(Γ,1,s,β)βΓt +
∑

β∈W s
s,t

(−1)α(Γ,1,t,β)βΓs

=

m(s,t)−1∑
j=0

(−1)α(Γ,1,s,p(s,t;j))p(s, t; j)Γt +

m(s,t)−1∑
g=0

(−1)α(Γ,1,t,p(t,s;g))p(t, s; g)Γs

=

m(s,t)−1∑
j=0

(−1)j+1p(s, t; j)Γt +

m(s,t)−1∑
g=0

(−1)g+2p(t, s; g)Γs

where we recall that we define p(s, t; j) to be the alternating product of s and t of length

j, ending in an s (as opposed to π(s, t; j) which is the alternating product starting in an s)

e.g. p(s, t; 3) = sts, p(s, t; 4) = tsts, and compute α(Γ, 1, τ, β) as follows:

α(Γs,t, 1, s, p(s, t; j)) = 1`(p(s, t; j)) +
0∑

k=1

|Γk|+ µ({s, t}, s)

= j + 0 + 1

= j + 1

α(Γs,t, 1, t, p(t, s; g)) = 1`(p(t, s; g)) +

0∑
k=1

|Γk|+ µ({s, t}, s)

= g + 0 + 2

= g + 2.

155
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The differential δ3(Γs,t⊃s) is given by:

δ3(Γs,t⊃s) =
∑
i=1,2

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

=
∑

τ∈{s,t}

∑
β∈W {s,t}\{τ}{s,t}

β−1sβ⊂{s,t}\{τ}

(−1)α(Γ,1,τ,β)βe(Γ′) +
∑
β=e,s

(−1)α(Γ,2,s,β)βe(Γ′)

=


∑

β=e,p(t,s;m(s,t)−1)

((−1)α(Γ,1,t,β)βΓs⊃s)+(−1)3Γst+(−1)5sΓst m(s,t) even∑
β=e

((−1)α(Γ,1,t,β)βΓs⊃s)+
∑

β=p(s,t;m(s,t)−1)

((−1)α(Γ,1,s,β)βΓt⊃t)

+(−1)3Γst+(−1)5sΓst

m(s,t) odd

=

{
(−1)2Γs⊃s+(−1)m(s,t)+1p(t,s;m(s,t)−1)Γs⊃s+(−1)3Γst+(−1)5sΓst m(s,t) even

(−1)2Γs⊃s+(−1)m(s,t)p(s,t;m(s,t)−1)Γt⊃t+(−1)3Γst+(−1)5sΓst m(s,t) odd

=

{
Γs⊃s − p(t, s;m(s, t)− 1)Γs⊃s − Γst − sΓst m(s, t) even

Γs⊃s − p(s, t;m(s, t)− 1)Γt⊃t − Γst − sΓst m(s, t) odd

and we compute α(Γs,t⊃s, i, τ, β) as follows

α(Γs,t⊃s, 1, t, e) = 1 · 0 +
0∑

k=1

|Γk|+ µ({s, t}, t)

= 0 + 0 + 2

= 2

α(Γs,t⊃s, 1, t, p(t, s;m(s, t)− 1)) = 1 · (m(s, t)− 1) +

0∑
k=1

|Γk|+ µ({s, t}, t)

= (m(s, t)− 1) + 0 + 2

= (m(s, t)− 1) + 2

α(Γs,t⊃s, 1, s, p(s, t;m(s, t)− 1)) = 1 · (m(s, t)− 1) +

0∑
k=1

|Γk|+ µ({s, t}, s)

= (m(s, t)− 1) + 0 + 1

= m(s, t)
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α(Γs,t⊃s, 2, s, e) = 2`(e) +

1∑
k=1

|Γk|+ µ({s}, s)

= 0 + 2 + 1

= 3

α(Γs,t⊃s, 2, s, s) = 2`(s) +
1∑

k=1

|Γk|+ µ({s}, s)

= 2 + 2 + 1

= 5.

Similarly the differential for δ3(Γs,t⊃t) is given by:

δ3(Γs,t⊃t) =
∑
i=1,2

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

=
∑

τ∈{s,t}

∑
β∈W {s,t}\{τ}{s,t}

β−1tβ⊂{s,t}\{τ}

(−1)α(Γ,1,τ,β)βe(Γ′) +
∑
β=e,t

(−1)α(Γ,2,t,β)βe(Γ′)

=

{
(−1)1Γt⊃t+(−1)m(s,t)p(s,t;m(s,t)−1)Γt⊃t+(−1)3Γst+(−1)5tΓst m(s,t) even

(−1)1Γt⊃t+(−1)m(s,t)+1p(t,s;m(s,t)−1)Γs⊃s+(−1)3Γst+(−1)5tΓst m(s,t) odd

=

{
(−1 + p(s, t;m(s, t)− 1))Γt⊃t − (1 + t)Γst m(s, t) even

−Γt⊃t + p(t, s;m(s, t)− 1)Γs⊃s − (1 + t)Γst m(s, t) odd

and we compute α(Γs,t⊃s, i, τ, β) as follows

α(Γs,t⊃t, 1, s, e) = 1 · 0 +

0∑
k=1

|Γk|+ µ({s, t}, s)

= 0 + 0 + 1 + 0

= 1

α(Γs,t⊃t, 1, s, p(s, t;m(s, t)− 1)) = 1 · (m(s, t)− 1) +

0∑
k=1

|Γk|+ µ({s, t}, s)

= (m(s, t)− 1) + 0 + 1

= m(s, t)
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α(Γs,t⊃t, 1, t, p(t, s;m(s, t)− 1)) = 1 · (m(s, t)− 1) +

0∑
k=1

|Γk|+ µ({s, t}, t)

= (m(s, t)− 1) + 0 + 2

= m(s, t) + 1

α(Γs,t⊃t, 2, t, e) = 2`(e) +

1∑
k=1

|Γk|+ µ({t}, t)

= 0 + 2 + 1

= 3

α(Γ, 2, t, t) = 2`(t) +
1∑

k=1

|Γk|+ µ({t}, t)

= 2 + 2 + 1

= 5.

�

Proof of Lemma 2.5.19. We compute using the De Concini resolution. From Example

2.5.6 we have:

Z ⊗
Ws

C3
δ3 // Z ⊗

Ws

C2
δ2 // Z ⊗

Ws

C1
δ1 // Z ⊗

Ws

C0

Generators:

1⊗ Γs⊃s⊃s 1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

Differentials: 1⊗ Γs
� / −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 0

1⊗ Γs⊃s⊃s
� / 1⊗−2(1⊗ Γs⊃s)

Computing H2(Wt;Zt) = ker(δ2)
im(δ3) gives Z2, generated by 1⊗ Γs⊃s. �

Proof of Lemma 2.5.20. We compute using the De Concini-Salvetti resolution. From

Example 2.5.7 we have:
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Z ⊗
WT

C3
δ3 // Z ⊗

WT

C2
δ2 // Z ⊗

WT

C1

Generators:

1⊗ Γs⊃s⊃s 1⊗ Γs⊃s 1⊗ Γs

1⊗ Γt⊃t⊃t 1⊗ Γt⊃t 1⊗ Γt

1⊗ Γs,t⊃s 1⊗ Γst

1⊗ Γs,t⊃t

Differentials: 1⊗ Γs⊃s
� / 0

1⊗ Γt⊃t
� / 0

1⊗ Γs,t
� / m(s, t)(−(1⊗ Γt) + (1⊗ Γs))

1⊗ Γs⊃s⊃s
� / −2(1⊗ Γs⊃s)

1⊗ Γt⊃t⊃t
� / −2(1⊗ Γt⊃t)

1⊗ Γs,t⊃s
� / 2(1⊗ Γs⊃s) if m(s, t) even

1⊗ Γs⊃s − 1⊗ Γt⊃t if m(s, t) odd

1⊗ Γs,t⊃t
� / −2(1⊗ Γt⊃t) if m(s, t) even

−1⊗ Γt⊃t + 1⊗ Γs⊃s if m(s, t) odd

The kernel of δ2 is generated by 1⊗Γs⊃s and 1⊗Γt⊃t. Modding out by the image of δ3 gives

that both of these generators have order two, and when m(s, t) is odd they are identified.

This completes the proof. �

Proof of Lemma 2.5.21. We apply the transfer map as defined in Proposition 2.3.15

to the generator(s) of H2(W{s,t};ZT ) and then the degree two collapse map f2 as computed

in Section 2.5.8.

For m(s, t) even, consider this map on the generators 1⊗ Γs⊃s and 1⊗ Γt⊃t of

H2(W{s,t};ZT ) = Z2 ⊕ Z2 in turn, restricted to the summand H2(Ws;Zs) in the image:

1⊗ Γs⊃s
d1

7→
∑
β∈WT

s

1β−1 ⊗ βΓs⊃s

=

m(s,t)−1∑
l=0

(−1)l ⊗ π(t, s; l)Γs⊃s

f27→ 1⊗ Γs⊃s − 1⊗ Γs⊃s

= 0.
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When applying the collapse map f2 above, we note that π(t, s; l)s is (Ws, ∅)-reduced provided

l /∈ {0,m(s, t)− 1} and π(t, s;m(s, t)− 1)s = π(s, t;m(s, t)) which may be written such that

it begins with s. Similarly:

1⊗ Γt⊃t
d1

7→
∑
β∈WT

s

1β−1 ⊗ βΓt⊃t

=

m(s,t)−1∑
l=0

(−1)l ⊗ π(t, s; l)Γt⊃t

f27→ 0,

where the final equality is due to the fact that π(t, s; l)t is (Ws, ∅)-reduced for all 0 ≤ l ≤
m(s, t)− 1.

Similarly both generators are mapped to zero when restricted to the H2(Wt;Zt) = Z2

summand in the image.

For m(s, t) odd we have by similar methods the generator 1⊗Γs⊃s of H2(W{s,t};ZT ) = Z2

is mapped as follows:

1⊗ Γs⊃s
d1

7→
∑
β∈WT

s

1β−1 ⊗ βΓs⊃s

=

m(s,t)−1∑
l=0

(−1)l ⊗ π(t, s; l)Γs⊃s

f27→ 1⊗ Γs⊃s

When applying the collapse map f2 we note that π(t, s; l)s is now (Ws, ∅)-reduced provided

l 6= 0. Therefore 1 ⊗ Γs⊃s is mapped to the generator of H2(Ws;Zs) = Z2. Similarly,

since 1 ⊗ Γs⊃s is identified with 1 ⊗ Γt⊃t in H2(W{s,t};ZT ) = Z2, when restricted to the

H2(Wt;Zt) = Z2 summand in the image, the generator of H2(W{s,t};ZT ) = Z2 is also mapped

to the generator of H2(Wt;Zt) = Z2. This completes the proof. �

Proof of Proposition 2.5.24. The twisted resolution for a general Coxeter group with

3 generators, up to degree two, follows from the calculations in Example 2.5.7 and is given

below:
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Z ⊗
WT

C2
δ2 // Z ⊗

WT

C1
δ1 // Z ⊗

WT

C0

Generators:

1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

1⊗ Γt⊃t 1⊗ Γt

1⊗ Γu⊃u 1⊗ Γu

1⊗ Γs,t

1⊗ Γt,u

1⊗ Γs,u

Differentials: 1⊗ Γs
� / −2(1⊗ Γ∅)

1⊗ Γt
� / −2(1⊗ Γ∅)

1⊗ Γu
� / −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 0

1⊗ Γt⊃t
� / 0

1⊗ Γu⊃u
� / 0

1⊗ Γs,t
� / m(s, t)((1⊗ Γs)− (1⊗ Γt))

1⊗ Γt,u
� / m(t, u)((1⊗ Γt)− (1⊗ Γu))

1⊗ Γs,u
� / m(s, u)((1⊗ Γs)− (1⊗ Γu))

The kernel of δ1 is therefore generated by

α = (1⊗ Γs)− (1⊗ Γt) and β = (1⊗ Γs)− (1⊗ Γu)

and the relations given by the image of δ2 are:

m(s, t)α = 0, m(s, u)β = 0, and m(t, u)(β − α) = 0.

Applying this to the groups in question gives:
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• For WT = W (A3):

3α = 0, 2β = 0, and 3(β − α) = 0

⇒ 3β = 0

⇒ β = 0

which gives H1(WT ;ZT ) = Z3 generated by α.

• For WT = W (B3):

4α = 0, 2β = 0, and 3(β − α) = 0

⇒ −3α = −3β

⇒ α = β

which gives H1(WT ;ZT ) = Z2 generated by α = β.

• For WT = W (H3):

5α = 0, 2β = 0, and 3(β − α) = 0

⇒ −3α = −3β

⇒ 2α = β

⇒ 4α = 2β = 0

⇒ α = 0

⇒ 3β = 0

⇒ β = 0

which gives H1(WT ;ZT ) = 0.

• For WT = W (I2(p))×W (A1):

pα = 0, 2β = 0, and 2(β − α) = 0

⇒ 2α = 0.

This gives

H1(WT ;ZT ) =

{
Z2 ⊕ Z2 if m(s, t) is even

Z2 if m(s, t) is odd

with generators α and β in the even case, and β in the odd case.

�

Proof of Proposition 2.5.25. Consider the twisted resolution of this group from Ex-

ample 2.5.7:
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Z ⊗
WT

C2
δ2 // Z ⊗

WT

C1
δ1 // Z ⊗

WT

C0

Generators:

1⊗ Γs⊃s 1⊗ Γs 1⊗ Γ∅

1⊗ Γt⊃t 1⊗ Γt

1⊗ Γs,t

Differentials: 1⊗ Γs
� / −2(1⊗ Γ∅)

1⊗ Γt
� / −2(1⊗ Γ∅)

1⊗ Γs⊃s
� / 0

1⊗ Γt⊃t
� / 0

1⊗ Γs,t
� / m(s, t)((1⊗ Γs)− (1⊗ Γt))

Computing the kernel of δ1 gives generator γ = 1⊗Γs− 1⊗Γt, and the image of δ2 gives the

relation m(s, t)γ = 0. This completes the proof.

�

Proof of Proposition 2.5.29. For the finite groups with generating set of size two,

the target of the d1 differential is 0, and so d1 is the zero map.

For each of the finite groups with generating set T = {s, t, u}, we apply the transfer

and collapse map for each two generator subgroup in turn. This can be calculated by hand,

but we do this using Python and the PyCox package [26] for the cases WT = W (A3) and

WT = W (B3). The code (given in Appendix A) takes as input a Coxeter group WT , I a

subset of T and w an element of T . It returns the image of 1 ⊗ Γw under the transfer and

collapse map from H1(WT ;ZT ) to H1(W,ZI). A sample example of the code in use is included

in Example A.1. The maps are given on the 3-generator subgroups as follows, where below

we consider the transfer and collapse map to the three 2-generator subgroups: I = {s, t},
I = {s, u} and I = {t, u}. For WT = W (I2(p)) ×W (A1) we calculate the differential and

collapse by hand.

• WT = W (A3) with diagram
s t u

H1(WT ;ZT ) = Z3 = 〈α〉 has generator α = (1⊗ Γs)− (1⊗ Γt).
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– I = {s, t}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γs − 1⊗ Γs)− (1⊗ Γt − 1⊗ Γs)

= 1⊗ Γs − 1⊗ Γt,

so the image of the generator of H1(WT ;ZT ) is the generator of

H1(WI ;ZI) = Z3 = 〈1⊗ Γs − 1⊗ Γt〉.
– I = {s, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γs + 1⊗ Γu)− (1⊗ Γu + 1⊗ Γs)

= 0,

so the image of the generator of H1(WT ;ZT ) is 0.

– I = {t, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γt − 1⊗ Γt)− (1⊗ Γt − 1⊗ Γu)

= 1⊗ Γu − 1⊗ Γt,

so the image of the generator of H1(WT ;ZT ) is minus the generator of

H1(WI ;ZI) = Z3 = 〈1⊗ Γt − 1⊗ Γu〉.
• WT = W (B3) with diagram

s
4
t u

H1(WT ;ZT ) = Z2 = 〈α〉 has generator α = (1⊗ Γs)− (1⊗ Γt).
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– I = {s, t}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γs − 1⊗ Γs + 1⊗ Γs − 1⊗ Γs)− (1⊗ Γt − 1⊗ Γt)

= 0,

so the image of the generator of H1(WT ;ZT ) is 0.

– I = {s, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (1⊗ Γs − 1⊗ Γs + 1⊗ Γs − 1⊗ Γs)− (1⊗ Γu − 1⊗ Γu)

= 0,

so the image of the generator of H1(WT ;ZT ) is 0.

– I = {t, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ (0)− (1⊗ Γt − 1⊗ Γu − 1⊗ Γt + 1⊗ Γu)

= 0,

so the image of the generator of H1(WT ;ZT ) is 0.

• WT = W (H3) with diagram
s

5
t u

H1(WT ;ZT ) = 0 and so the transfer and collapse map is zero.

• WT = W (I2(p))×W (A1) with diagram
s

p

t u

When p is even, H1(WT ;ZT ) = Z2⊕Z2 with generators α = (1⊗Γs)−(1⊗Γt) and β =

(1⊗Γs)− (1⊗Γu). The transfer and collapse maps for each subgroup are therefore:
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– I = {s, t}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

= (1⊗ Γs − 1⊗ uΓs)− (1⊗ Γt − 1⊗ uΓt)

f1

7→ (1⊗ Γs − 1⊗Gs)− (1⊗ Γt − 1⊗ Γt)

= 0,

β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

= (1⊗ Γs − 1⊗ uΓs)− (1⊗ Γu − 1⊗ uΓu)

f1

7→ (1⊗ Γs − 1⊗ Γs)− (0)

= 0,

so the image of either generator of H1(WT ;ZT ) is 0.

– I = {s, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

= (

p−1∑
l=0

(−1)l ⊗ π(t, s; l)Γs)− ((−1)l ⊗ π(t, s; l)Γt)

f1

7→ 1⊗ Γs + (−1)p−1(1⊗ Γs)− 0

= 0,
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β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

=

p−1∑
l=0

((−1)l ⊗ π(t, s; l)Γs − (−1)l ⊗ π(t, s; l)Γu)

f1

7→ 1⊗ Γs + (−1)p−1(1⊗ Γs)−
p−1∑
l=0

(−1)l ⊗ Γu

= 0.

Here applying f1, we note that π(t, s; l)s is (I, ∅)-reduced for l 6= 0, p−1, π(t, s; l)t

is (I, ∅)-reduced for all 0 ≤ l ≤ p− 1 and π(t, s; l)u = u(π(t, s; l)) for all 0 ≤ l ≤
p− 1. So the image of either generator of H1(WT ;ZT ) is 0.

– I = {t, u}
This case is symmetric to the case I = {s, u} and so the image of either generator

of H1(WT ;ZT ) is 0.

When p is odd, H1(WT ;ZT ) = Z2 with generator β = (1 ⊗ Γs) − (1 ⊗ Γu). The

transfer and collapse maps for each subgroup are therefore:

– I = {s, t}

β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

= (1⊗ Γs − 1⊗ uΓs)− (1⊗ Γu − 1⊗ uΓu)

f1

7→ (1⊗ Γs − 1⊗ Γs)− (0)

= 0,

so the image of the generator of H1(WT ;ZT ) is 0.
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– I = {s, u}

β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

=

p−1∑
l=0

((−1)l ⊗ π(t, s; l)Γs − (−1)l ⊗ π(t, s; l)Γu)

f1

7→ 1⊗ Γs −
p−1∑
l=0

(−1)l ⊗ Γu

= 1⊗ Γs − 1⊗ Γu.

Here applying f1, we note that π(t, s; l)s is (I, ∅)-reduced for l 6= 0 and

π(t, s; l)u = u(π(t, s; l)) for all 0 ≤ l ≤ p − 1. So the image of the generator of

H1(WT ;ZT ) is the generator of H1(WI ;ZT ) = Z2 since m(s, u) = 2.

– I = {t, u}
This case is symmetric to the case I = {s, u} and so the image of the generator

of H1(WT ;ZT ) is the generator of H1(WI ;ZT ) = Z2 since m(t, u) = 2.

�

Proof of Lemma 2.5.41. The E2 page for the Coxeter group W (A4) is given by

3 0 · · ·

2 0 Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4

We have the following diagrams for W = W (A4):
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DW :
s t u v

Dodd = DW

D•• : {s, u}
{s, v}

{t, v} DA2 : {s, t}
{t, u}

{u, v}

DA3 : {s, t, u} {t, u, v} D�
•• = D••

and D even is the empty diagram. Computing the terms in the spectral sequence as defined

at the start of this section therefore gives:

H0(Dodd;Z2) = Z2

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z3 ⊕ 0

= Z2 ⊕ Z3

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2)

= 0⊕ 0⊕ Z2 ⊕ 0

= Z2

�

Proof of Lemma 2.5.43. The twisted resolution for a finite Coxeter group with 4 gen-

erators, up to degree two, easily follows from the calculations in Example 2.5.7 and is as

follows, where in the diagram below x ∈ {s, t, u, v}:
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Z ⊗
WT

C2
δ2 // Z ⊗

WT

C1
δ1 // Z ⊗

WT

C0

Generators:

1⊗ Γx⊃x 1⊗ Γx 1⊗ Γ∅

1⊗ Γs,t

1⊗ Γt,u

1⊗ Γu,v

1⊗ Γs,u

1⊗ Γs,v

1⊗ Γt,v

Differentials: 1⊗ Γx
� / −2(1⊗ Γ∅)

1⊗ Γx⊃x
� / 0

1⊗ Γs,t
� / m(s, t)((1⊗ Γs)− (1⊗ Γt))

1⊗ Γt,u
� / m(t, u)((1⊗ Γt)− (1⊗ Γu))

1⊗ Γu,v
� / m(u, v)((1⊗ Γu)− (1⊗ Γv))

1⊗ Γs,u
� / m(s, u)((1⊗ Γs)− (1⊗ Γu))

1⊗ Γs,v
� / m(s, v)((1⊗ Γs)− (1⊗ Γv))

1⊗ Γt,v
� / m(t, v)((1⊗ Γt)− (1⊗ Γv))

The kernel of δ2 is therefore generated by

α = (1⊗ Γs)− (1⊗ Γt) ,

β = (1⊗ Γs)− (1⊗ Γu),

γ = (1⊗ Γs)− (1⊗ Γv),

and the relations given by the image of δ3 are:

m(s, t)α = 0

m(s, u)β = 0

m(s, v)γ = 0

m(t, u)(β − α) = 0

m(t, v)(γ − α) = 0

m(u, v)(γ − β) = 0.

Applying this to the groups in question gives:

• For WT = W (A4):
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3α = 0

2β = 0

2γ = 0

3(β − α) = 0 ⇒ 3β = 0 ⇒ β = 0

2(γ − α) = 0 ⇒ −2α = 0 ⇒ α = 0

3(γ − β) = 0 ⇒ 3γ = 0 ⇒ γ = 0

which gives H1(WT ;ZT ) = 0.

• For WT = W (B4):

4α = 0

2β = 0

2γ = 0

3(β − α) = 0 ⇒ β − α = 0 ⇒ β = α

2(γ − α) = 0

3(γ − β) = 0 ⇒ γ − β = 0 ⇒ γ = β

which gives H1(WT ;ZT ) = Z2 generated by α = β = γ.

• For WT = W (H4):

5α = 0

2β = 0

2γ = 0

3(β − α) = 0 ⇒ β − 2α = 0 ⇒ β = 2α

⇒ 4α = 0 ⇒ α = 0 ⇒ β = 0

2(γ − α) = 0

3(γ − β) = 0 ⇒ γ = 0

which gives H1(WT ;ZT ) = 0.

• For WT = W (F4):

3α = 0

2β = 0

2γ = 0

4(β − α) = 0 ⇒ 4α = 0 ⇒ α = 0

2(γ − α) = 0 ⇒ 2γ = 0

3(γ − β) = 0 ⇒ γ = β

which gives H1(WT ;ZT ) = Z2 generated by β = γ.

• For WT = W (D4):

2α = 0

3β = 0

2γ = 0

3(β − α) = 0 ⇒ α = 0

2(γ − α) = 0

3(γ − β) = 0 ⇒ γ = 0

which gives H1(WT ;ZT ) = Z3 generated by β.

• For WT = W (I2(p))×W (I2(q)):

pα = 0

2β = 0

2γ = 0

2(β − α) = 0 ⇒ 2α = 0

2(γ − α) = 0

q(γ − β) = 0

This gives

H1(WT ;ZT ) =


Z2 ⊕ Z2 ⊕ Z2 if p and q are both even

Z2 ⊕ Z2 if p is odd and q is even

Z2 ⊕ Z2 if p is even and q is odd

Z2 if p and q are both odd
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with generators α when p even and β, γ when q even, with γ = β when q odd and

α = 0 when p odd.

When we have the product of a finite group with 3 generators and W (A1), the generators and

relations become as follows:

m(s, t)α = 0

m(s, u)β = 0

2γ = 0

m(t, u)(β − α) = 0

2(γ − α) = 0 ⇒ 2α = 0

2(γ − β) = 0 ⇒ 2β = 0

so given the generators and relations in the first homology of the 3-generator subgroup we

can calculate the homology of the product with W (A1) by:

• adding an extra Z2 summand generated by γ

• adding the relations 2α = 0 and 2β=0.

Applying this to the 3 generator groups from Proposition 2.5.24 gives the following results:

• For WT = W (A3) ×W (A1): H1(W (A3);ZT ) = Z3 generated by α. Adding the Z2

summand generated by γ and the relation 2α = 0 gives H1(WT ;ZT ) = Z2 generated

by γ.

• For WT = W (B3) ×W (A1): H1(B3;ZT ) = Z2 generated by α = β. Adding the Z2

summand generated by γ and the relations 2α = 2β = 0 gives H1(WT ;ZT ) = Z2⊕Z2

generated by α = β and γ.

• ForWT = W (H3)×W (A1): H1(W (H3);ZT ) = 0. Adding the Z2 summand generated

by γ gives H1(WT ;ZT ) = Z2 generated by γ.

�

Proof of Lemma 2.5.44. For each possible 4 generator subgroup WT , we let I cycle

through the subsets of T of size 3 and consider transfer and collapse maps from WT to WI :

• For WT = W (A4): H1(WT ;ZT ) = 0, so all maps are zero.

• For WT = W (B4): H1(WT ;ZT ) = Z2 generated by α = β = γ.

– I = {s, t, u}

α = (1⊗ Γs)− (1⊗ Γt)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ 0

– I = {s, t, v} Similarly, α 7→ 0.

– I = {s, u, v} Similarly, α 7→ 0.

– I = {t, u, v} Similarly, α 7→ 0.

• For WT = W (H4): H1(WT ;ZT ) = 0 so all maps are zero.

• For WT = W (F4): H1(WT ;ZT ) = Z2 generated by β = γ.
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– I = {s, t, u}

β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

f1

7→ 0

– I = {s, t, v} Similarly, β 7→ 0.

– I = {s, u, v} Similarly, β 7→ 0.

– I = {t, u, v} Similarly, β 7→ 0.

• For WT = W (D4): H1(WT ;ZT ) = Z3 generated by β.

– I = {s, t, u}

β = (1⊗ Γs)− (1⊗ Γu)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓu)

f1

7→ 0− (2(1⊗ Γu)− (1⊗ Γs)− (1⊗ Γt))

= 1⊗ Γs + 1⊗ Γt − 2(1⊗ Γu)

= 2(1⊗ Γs − 1⊗ Γu)− (1⊗ Γs − 1⊗ Γt)

The generator for H1(WI ;ZI) = Z3 when I = {s, t, u} is (1⊗ Γs − 1⊗ Γu) and

in this homology group (1⊗ Γs − 1⊗ Γt) is identified with zero. Therefore the

generator for H1(WT ;ZT ) gets mapped to 2 times the generator of H1(WI ;ZT )

when I = {s, t, u}.
– I = {s, t, v} In this case a similar computation gives α 7→ 0.

– I = {s, u, v} This case is symmetric to that of I = {s, t, u}. Therefore the

generator for H1(WT ;ZT ) gets mapped to 2 times the generator of H1(WI ;ZT )

when I = {s, u, v}.
– I = {t, u, v} This case is symmetric to that of I = {s, t, u}. Therefore the

generator for H1(WT ;ZT ) gets mapped to 2 times the generator of H1(WI ;ZT )

when I = {t, u, v}.
• For WT = W (I2(p))×W (I2(q)):

H1(WT ;ZT ) =


Z2 ⊕ Z2 ⊕ Z2 if p and q are both even

Z2 ⊕ Z2 if p is odd and q is even

Z2 ⊕ Z2 if p is even and q is odd

Z2 if p and q are both odd
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with generators α when p even and β, γ when q even, with γ = β when q odd and

α = 0 when p odd. By symmetry, we only need to compute the transfer and collapse

map for I = {s, t, u} in the 4 cases that either p and q are both odd, both even, p is

odd and q is even, or p is even and q is odd.

– p and q are both odd: by similar reasoning to Proposition 2.5.29, it follows

generator β maps as the identity to the generator of H1(WI ;ZI).
– p and q are both even: all generators are mapped to zero.

– p is odd and q is even: both generators β and γ are mapped to zero.

– p is even and q is odd: both generators α and β = γ are mapped as the identity

to the two generators of H1(WI ;ZI).
• For WT = W (A3)×W (A1): H1(WT ;ZT ) = Z2 generated by γ.

– I = {s, t, u}

γ = (1⊗ Γs)− (1⊗ Γv)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ 0

– I = {s, t, v} Similarly, γ 7→ 0.

– I = {s, u, v}

γ = (1⊗ Γs)− (1⊗ Γv)

d1

7→ (
∑
β∈WT

I

1β−1 ⊗ βΓs)− (
∑
β∈WT

I

1β−1 ⊗ βΓt)

f1

7→ 1⊗ Γs + 1⊗ Γu − 2(1⊗ Γv)

= 2(1⊗ Γs − 1⊗ Γv)− (1⊗ Γs − 1⊗ Γu)

The generators for H1(WI ;ZT ) when I = {t, u, v} are (1 ⊗ Γt − 1 ⊗ Γu) and

(1⊗Γt−1⊗Γv) and they both generate a Z2 summand. Therefore the generator

for H1(WT ;ZT ) gets mapped to the generator 1 ⊗ Γt − 1 ⊗ Γv of H1(WI ;ZI)
when I = {s, u, v}.

– I = {t, u, v} α 7→ 0

• For WT = W (B3)×W (A1): H1(WT ;ZT ) = Z2⊕Z2 generated by α = β and γ. Using

the Python script in Appendix A we compute that transfer maps to all 3 generator

subgroups are 0.

• For WT = W (H3) ×W (A1): H1(WT ;ZT ) = Z2 generated by γ. Using the Python

script in Appendix A we compute that transfer maps to all 3 generator subgroups

are 0.

�
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Proof of Lemma 2.5.50. The E∞ page for the Coxeter group V = W (I2(2p))×W (A1),

for p > 1 is given by

...
...

3 0 · · ·

2 0 Z2 ⊕ Z2 ⊕ Z2 ? · · ·

1 0 0 Z2 ⊕ Z2 ⊕ Z2p ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

We have the following diagrams for V = W (I2(2p))×W (A1), when p > 1:

DV :
s

2p
t u

Dodd :
s t u

D•• : {s, u} {t, u} D�
•• = D••

D even

{s, t, u}
where DA2 and DA3 are the empty diagram. Below we compute the terms in the spectral

sequence given at the start of this section:

H0(Dodd;Z2) = Z2 ⊕ Z2 ⊕ Z2

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z2 ⊕ 0⊕ Z2p

= Z2 ⊕ Z2 ⊕ Z2p

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2)

= 0⊕ Z2 ⊕ 0⊕ 0

= Z2.
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The third integral homology of V = W (I2(2p))×W (A1) can be computed via the Künneth

formula for groups, as follows:

H3(W (I2(2p))×W (A1);Z) =
⊕
i+j=3

H(i(W (I2(2p));Z)⊗Hj(W (A1);Z))

⊕
i+j=2

Tor(Hi(W (I2(2p));Z), Hj(W (A1);Z))

= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2p ⊕ Z2 ⊕ Z2

where we compute this using the following

H0(W (I2(2p));Z)⊗H3(W (A1);Z) = Z⊗ Z2 = Z2

H1(W (I2(2p));Z)⊗H2(W (A1);Z) = (Z2 ⊕ Z2)⊗ 0 = 0

H2(W (I2(2p));Z)⊗H1(W (A1);Z) = Z2 ⊗ Z2 = Z2

H3(W (I2(2p));Z)⊗H0(W (A1);Z) = (Z2 ⊕ Z2 ⊕ Z2p)⊗ Z = Z2 ⊕ Z2 ⊕ Z2p

Tor(H0(W (I2(2p));Z), H2(A1;Z)) = Tor(Z, 0) = 0

Tor(H1(W (I2(2p));Z), H1(W (A1);Z)) = Tor((Z2 ⊕ Z2),Z2) = Z2 ⊕ Z2

Tor(H2(W (I2(2p));Z), H0(W (A1);Z)) = Tor(Z2,Z) = 0

For the case p = 1, i.e. V = W (I2(p))×W (A1) = W (A1)×W (A1)×W (A1), we have the

following E∞ page:

...
...

3 0 · · ·

2 0 Z2 ⊕ Z2 ⊕ Z2 ? · · ·

1 0 0 Z2 ⊕ Z2 ⊕ Z2 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

Computed via the following diagrams for V = W (A1)×W (A1)×W (A1):
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DV :
s t u

Dodd :
s t u

D•• : {s, t}
{s, u}

{t, u} D�
•• = D••

D even :
{s, t, u}

where DA2 and DA3 are the empty diagram. The terms in the spectral sequence as given at

the start of this section are therefore:

H0(Dodd;Z2) = Z2 ⊕ Z2 ⊕ Z2

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z2 ⊕ Z20⊕ 0

= Z2 ⊕ Z2 ⊕ Z2

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2)

= 0⊕ Z2 ⊕ 0⊕ 0

= Z2

�

Proof of Lemma 2.5.51. The E∞ page for the Coxeter group V = W (A3) is given by

...
...

3 0 · · ·

2 0 Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

which is computed via the following diagrams for V = W (A3):
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DV :
s t u

Dodd :
s t u

D•• : {s, u} DA2 :
{s, t}{t, u}

DA3 :
{s, t, u}

D�
•• = D••

and D even is the empty diagram. Computing the terms in the spectral sequence therefore

gives:

H0(Dodd;Z2) = Z2

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z3 ⊕ 0

= Z2 ⊕ Z3

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆W
W (B3)⊆W

Z2)

= 0⊕ 0⊕ Z2 ⊕ 0

= Z2

�

Proof of Lemma 2.5.55. We compare the spectral sequence for the groups W (B3) and

W (H3) with their third integral homologies computed using the De Concini - Salvetti resolu-

tion.

• For V = W (B3) the Coxeter group of type B3 the diagrams are

DV :
s

4
t u

Dodd :
s t u

D•• :
{s, u}

DA2 :
{t, u}

D�
•• = D••

and DA3 and D even are the empty diagram. So the entries in the spectral sequence

become

H0(Dodd;Z2) = Z2 ⊕ Z2
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H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z3 ⊕ Z4

= Z2 ⊕ Z3 ⊕ Z4

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆V
W (B3)⊆V

Z2)

= 0⊕ 0⊕ 0⊕ Z2

= Z2

The E∞ page for the Coxeter group V = W (B3) is therefore given by

...
...

3 0 · · ·

2 0 Z2 ⊕ Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ⊕ Z4 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

• For V = W (H3) the Coxeter group of type H3 the diagrams are

DV :
s

5
t u

Dodd := DW

D•• :
{s, u}

DA2 :
{t, u}

D�
•• = D••

and DA3 and D even are the empty diagram. So the entries in the spectral sequence

become

H0(Dodd;Z2) = Z2

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕ ( ⊕
m(s,t)>3,6=∞

Zm(s,t))

= Z2 ⊕ Z3 ⊕ Z5



B. CALCULATIONS FOR SECTION 2.5 180

H1(D�
••;Z2)⊕H0(D even ;Z2)⊕H0(DA3 ;Z2)⊕ ( ⊕

W (H3)⊆V
W (B3)⊆V

Z2)

= 0⊕ 0⊕ 0⊕ Z2

= Z2

The E∞ page for the Coxeter group V = W (H3) is therefore given by

...
...

3 0 · · ·

2 0 Z2 ? · · ·

1 0 0 Z2 ⊕ Z3 ⊕ Z5 ?

0 Z ? ? Z2 ? · · ·

0 1 2 3 4 · · ·

To compute the third integral homology of W (B3) and W (H3) we use the De Concini -

Salvetti resolution from [18], with integer coefficients and a trivial action of the group. We

expand on Example 2.5.5 to compute the typical resolution of a three generator Coxeter group

before tensoring. We let x and y be such that x, y ∈ {s, t, u} with x < y in the ordering.
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C3
δ3 // C2

δ2 //

Generators:

Γx⊃x⊃x Γx⊃x

Γx,y⊃x Γx,y

Γx,y⊃t

Γs,t,u

Differentials:

Γx⊃x⊃x
� / (x− 1)Γx⊃x

Γx,y⊃x
� / (1− p(y, x;m(x, y)− 1))Γx⊃x − (1 + x)Γxy if m(x, y) even

Γx⊃x − p(x, y;m(x, y)− 1)Γy⊃y − (1 + x)Γxy if m(x, y) odd

Γx,y⊃y
� / (−1 + p(x, y;m(x, y)− 1))Γy⊃y − (1 + y)Γxy if m(x, y) even

−Γy⊃y + p(y, x;m(x, y)− 1)Γx⊃x − (1 + y)Γxy if m(x, y) odd

Γs,t,u
� / see below

We recall the formula for δk(e(Γ)) from Equation (4).

δk(e(Γ)) =
∑
i≥1

|Γi|>|Γi+1|

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

Then δ3(Γs,t,u) is computed as follows:

δ3(Γs,t,u) =
∑
i=1

∑
τ=s,t,u

∑
β∈WΓi\{τ}

Γi

(−1)`(β)+µ({s,t,u},τ)βe(Γ′)

=
∑

β∈W {t,u}{s,t,u}

(−1)`(β)+1βΓt,u +
∑

β∈W {s,u}{s,t,u}

(−1)`(β)+2βΓs,u

+
∑

β∈W {s,t}{s,t,u}

(−1)`(β)+3βΓs,t

α(Γs,t,u, 1, τ, p(s, t; j)) = i · `(β) +
i−1∑
k=1

|Γk|+ µ({s, t, u}, τ)

= `(β) + 0 + µ({s, t, u}, τ)

= `(β) + µ({s, t, u}, τ)
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Tensoring with the integers over the trivial group action gives the following:

Z⊗WT
C3

δ3 // Z⊗WT
C2

δ2 //

Differentials:

1⊗ Γx⊃x⊃x
� / 0

1⊗ Γx,y⊃x
� / −2(1⊗ Γxy) if m(x, y) even

1⊗ Γx⊃x − 1⊗ Γy⊃y − 2(1⊗ Γxy) if m(x, y) odd

1⊗ Γx,y⊃y
� / −2(1⊗ Γxy) if m(x, y) even

−1⊗ Γy⊃y + 1⊗ Γx⊃x − 2(1⊗ Γxy) if m(x, y) odd

We also must compute the differentials mapping in from C4. In the diagram below we let x

and y be such that x, y ∈ {s, t, u} with x < y in the ordering. The differentials that we have

not already computed previously are computed below the diagram.

C4
δ4 // C3

δ3 // C2

Generators:

Γx⊃x⊃x⊃x

Γx,y⊃x,y

Γx,y⊃x⊃x

Γx,y⊃y⊃y

Γs,t,u⊃x

Differentials:

Γx⊃x⊃x⊃x
� / Γx⊃x⊃x + xΓx⊃x⊃x
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The δ4(Γx,y⊃x,y) computation is given by:

δ4(Γx,y⊃x,y) =
∑
i=2

∑
τ=x,y

∑
β∈WΓi\{τ}

Γi

(−1)µ({x,y},τ)βe(Γ′)

=
∑

β∈W {y}{x,y}

(−1)1βΓx,y⊃y +
∑

β∈W {x}{x,y}

(−1)2βΓx,y⊃x

= −(
∑

β∈W {y}{x,y}

βΓx,y⊃y) +
∑

β∈W {x}{x,y}

βΓx,y⊃x

α(Γx,y⊃x,y, 2, τ, β) = i · `(β) +
i−1∑
k=1

|Γk|+ µ({x, y}, τ)

= 2`(β) + 2 + µ({x, y}, τ)

= 2`(β) + 2 + µ({x, y}, τ)

The δ4(Γx,y⊃x⊃x) computation is similar to that of δ3(Γx,y⊃x):

δ3(Γs,t⊃s⊃s) =

{
Γx⊃x⊃x − p(y, x;m(x, y)− 1)Γx⊃x⊃x + Γxy⊃x − xΓxy⊃x m(x, y) even

Γx⊃x⊃x − p(x, y;m(x, y)− 1)Γt⊃t⊃y + Γxy⊃x − xΓxy⊃x m(x, y) odd

The δ4(Γx,y⊃y⊃y) computation is similar to that of δ3(Γx,y⊃y):

δ3(Γs,t⊃s⊃s) =

{
(−1 + p(x, y;m(x, y)− 1))Γy⊃y⊃y + (1− y)Γxy⊃y m(x, y) even

−Γy⊃y⊃y + p(y, x;m(x, y)− 1)Γx⊃x⊃x + (1− y)Γxy⊃y m(x, y) odd

The differentials δ4(Γs,t,u⊃x) with x ∈ {s, t, u} will be computed on a case by case basis for

Coxeter groups W (B3) and W (H3). Tensoring with Z gives the following resolution, when

again x and y are such that x, y ∈ {s, t, u} with x < y in the ordering.:
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Z⊗W C4
δ4 // Z⊗W C3

δ3 // Z⊗W C2

Differentials:

1⊗ Γx⊃x⊃x⊃x
� // 2(1⊗ Γx⊃x⊃x)

1⊗ Γx,y⊃x,y
� // −m(x, y)(1⊗ Γx,y⊃y) +m(x, y)(1⊗ Γx,y⊃x)

1⊗ Γx,y⊃x⊃x
� // 0 if m(x, y) even

1⊗ Γx⊃x⊃x − 1⊗ Γy⊃y⊃y if m(x, y) odd

1⊗ Γx,y⊃y⊃y
� // 0 if m(x, y) even

−1⊗ Γy⊃y⊃y + 1⊗ Γx⊃x⊃x if m(x, y) odd

For W (B3) this gives the following resolution, where the computations for δ3(Γs,t,u) and

δ4(Γs,t,u⊃x) with x ∈ {s, t, u} are given afterwards:

Z⊗WT
C3

δ3 // Z⊗WT
C2

δ2 //

Differentials:

1⊗ Γs⊃s⊃s
� / 0

1⊗ Γt⊃t⊃t
� / 0

1⊗ Γu⊃u⊃u
� / 0

1⊗ Γs,t⊃s
� / −2(1⊗ Γs,t)

1⊗ Γs,t⊃t
� / −2(1⊗ Γs,t)

1⊗ Γs,u⊃s
� / −2(1⊗ Γs,u)

1⊗ Γs,u⊃u
� / −2(1⊗ Γs,u)

1⊗ Γt,u⊃t
� / 1⊗ Γt⊃t − 1⊗ Γu⊃u − 2(1⊗ Γt,u)

1⊗ Γt,u⊃u
� / −1⊗ Γu⊃u + 1⊗ Γt⊃t − 2(1⊗ Γt,u)

1⊗ Γs,t,u
� / 0
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Z⊗W C4
δ4 // Z⊗W C3

δ3 // Z⊗W C2

Differentials:

1⊗ Γs⊃s⊃s⊃s
� // 2(1⊗ Γs⊃s⊃s)

1⊗ Γt⊃t⊃t⊃t
� // 2(1⊗ Γt⊃t⊃t)

1⊗ Γu⊃u⊃u⊃u
� // 2(1⊗ Γu⊃u⊃u)

1⊗ Γs,t⊃s,t
� // −4(1⊗ Γs,t⊃t) + 4(1⊗ Γs,t⊃s)

1⊗ Γs,u⊃s,u
� // −2(1⊗ Γs,u⊃u) + 2(1⊗ Γs,u⊃s)

1⊗ Γt,u⊃t,u
� // −3(1⊗ Γt,u⊃u) + 3(1⊗ Γt,u⊃t)

1⊗ Γs,t⊃s⊃s
� // 0

1⊗ Γs,t⊃t⊃t
� // 0

1⊗ Γs,u⊃s⊃s
� // 0

1⊗ Γs,u⊃u⊃u
� // 0

1⊗ Γt,u⊃t⊃t
� // 1⊗ Γt⊃t⊃t − 1⊗ Γu⊃u⊃u

1⊗ Γt,u⊃u⊃u
� // −1⊗ Γu⊃u⊃u + 1⊗ Γt⊃t⊃t

1⊗ Γs,t,u⊃s
� // 2(1⊗ Γs,t,u)

1⊗ Γs,t,u⊃t
� // 2(1⊗ Γs,t,u)

1⊗ Γs,t,u⊃u
� // 2(1⊗ Γs,t,u)

The δ3(Γs,t,u) computation is given by:

δ3(Γs,t,u) =
∑

β∈W {t,u}{s,t,u}

(−1)`(β)+1βΓt,u +
∑

β∈W {s,u}{s,t,u}

(−1)`(β)+2βΓs,u

+
∑

β∈W {s,t}{s,t,u}

(−1)`(β)+3βΓs,t
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We note here that after tensoring with Z each summand will become a sum of identical

generators, with sign depending on the length of the minimal coset representatives. We write

a short Python program, attached in Appendix A which returns the number of even and odd

length minimal coset representatives, and we note that in this case for every summand the

signs will cancel out.

The δ4(Γs,t,u⊃s) computation is given by:

δ4(Γs,t,u⊃s) =
∑
i=1,2

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

Here we compute by Python in Appendix A the coset representatives of a two generator

subgroup of {s, t, u} and the conjugates of an element of {s, t, u} by these representatives.

Whenever this conjugate is a generator of the two element subgroup, it follows that there is

another coset representative which conjugates to the same generator, and these differ in length

modulo 2. This means that the corresponding signs for the entries will be the opposite in the

above sum and they will therefore cancel upon tensoring with Z. A sample of this calculation

is shown in Example A.2. We therefore only need to consider the case where i = 2.

δ4(Γs,t,u⊃s) =
∑
i=2

∑
τ=s

∑
β∈Ws

(−1)α(Γ,i,τ,β)βΓs,t,u

= Γs,t,u + sΓs,t,u

α(Γs,t,u⊃s, i, τ, β) = i · `(β) +

i−1∑
k=1

|Γk|+ µ(Γi, τ)

α(Γs,t,u⊃s, 2, s, β) = 2.`(β) + 3 + 1

We therefore have as generators for H3(W (B3);Z):

α = 1⊗ Γs⊃s⊃s

β = 1⊗ Γt⊃t⊃t

γ = 1⊗ Γu⊃u⊃u

δ = 1⊗ Γs,t⊃s − 1⊗ Γs,t⊃t

ε = Γs,u⊃s − 1⊗ Γs,u⊃u

η = Γt,u⊃t − 1⊗ Γt,u⊃u

ι = 1⊗ Γs,t,u

and the relations are given by the image of δ4 as follows:

2α = 2β = 2γ = 4δ = 2ε = 3η = 2ι = 0

β = γ
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So the third integral homology of W (B3) is therefore given by:

H3(W (B3);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z4 ⊕ Z3

and thus we see there are no non trivial extensions for the B3 component.

For W (H3) this gives the following resolution, where we again compute δ3(Γs,t,u) and

δ4(Γs,t,u⊃x) with x ∈ {s, t, u} using Python (see Appendix A):

Z⊗WT
C3

δ3 // Z⊗WT
C2

δ2 //

Differentials:

1⊗ Γs⊃s⊃s
� / 0

1⊗ Γt⊃t⊃t
� / 0

1⊗ Γu⊃u⊃u
� / 0

1⊗ Γs,t⊃s
� / 1⊗ Γs⊃s − 1⊗ Γt⊃t − 2(1⊗ Γs,t)

1⊗ Γs,t⊃t
� / −1⊗ Γt⊃t + 1⊗ Γs⊃s − 2(1⊗ Γs,t)

1⊗ Γs,u⊃s
� / −2(1⊗ Γs,u)

1⊗ Γs,u⊃u
� / −2(1⊗ Γs,u)

1⊗ Γt,u⊃t
� / 1⊗ Γt⊃t − 1⊗ Γu⊃u − 2(1⊗ Γt,u)

1⊗ Γt,u⊃u
� / −1⊗ Γu⊃u + 1⊗ Γt⊃t − 2(1⊗ Γt,u)

1⊗ Γs,t,u
� / 0
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Z⊗W C4
δ4 // Z⊗W C3

δ3 // Z⊗W C2

Differentials:

1⊗ Γs⊃s⊃s⊃s
� // 2(1⊗ Γs⊃s⊃s)

1⊗ Γt⊃t⊃t⊃t
� // 2(1⊗ Γt⊃t⊃t)

1⊗ Γu⊃u⊃u⊃u
� // 2(1⊗ Γu⊃u⊃u)

1⊗ Γs,t⊃s,t
� // −5(1⊗ Γs,t⊃t) + 4(1⊗ Γs,t⊃s)

1⊗ Γs,u⊃s,u
� // −2(1⊗ Γs,u⊃u) + 2(1⊗ Γs,u⊃s)

1⊗ Γt,u⊃t,u
� // −3(1⊗ Γt,u⊃u) + 3(1⊗ Γt,u⊃t)

1⊗ Γs,t⊃s⊃s
� // 1⊗ Γs⊃s⊃s − 1⊗ Γt⊃t⊃t

1⊗ Γs,t⊃t⊃t
� // −1⊗ Γt⊃t⊃t + 1⊗ Γs⊃s⊃s

1⊗ Γs,u⊃s⊃s
� // 0

1⊗ Γs,u⊃u⊃u
� // 0

1⊗ Γt,u⊃t⊃t
� // 1⊗ Γt⊃t⊃t − 1⊗ Γu⊃u⊃u

1⊗ Γt,u⊃u⊃u
� // −1⊗ Γu⊃u⊃u + 1⊗ Γt⊃t⊃t

1⊗ Γs,t,u⊃s
� // 2(1⊗ Γs,t,u)

1⊗ Γs,t,u⊃t
� // 2(1⊗ Γs,t,u)

1⊗ Γs,t,u⊃u
� // 2(1⊗ Γs,t,u)
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We therefore have as generators for H3(W (H3);Z):

α = 1⊗ Γs⊃s⊃s

β = 1⊗ Γt⊃t⊃t

γ = 1⊗ Γu⊃u⊃u

δ = 1⊗ Γs,t⊃s − 1⊗ Γs,t⊃t

ε = Γs,u⊃s − 1⊗ Γs,u⊃u

η = Γt,u⊃t − 1⊗ Γt,u⊃u

ι = 1⊗ Γs,t,u

and the relations are given by the image of δ4 as follows:

2α = 2β = 2γ = 5δ = 2ε = 3η = 2ι = 0

α = β

β = γ

So the third integral homology of W (H3) is therefore given by:

H3(W (H3);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z5

and thus we see there are no extension problems for the H3 component.

�
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[22] G. Ellis, J. Harris, and E. Sköldberg. Polytopal resolutions for finite groups. J. Reine Angew. Math.,

598:131–137, 2006.
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